Lithium NLP: A System for Rich Information Extraction from Noisy User Generated Text on Social Media

NUT@EMNLP Pub Date : 2017-07-13 DOI:10.18653/v1/W17-4417
P. Bhargava, Nemanja Spasojevic, Guoning Hu
{"title":"Lithium NLP: A System for Rich Information Extraction from Noisy User Generated Text on Social Media","authors":"P. Bhargava, Nemanja Spasojevic, Guoning Hu","doi":"10.18653/v1/W17-4417","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the Lithium Natural Language Processing (NLP) system - a resource-constrained, high-throughput and language-agnostic system for information extraction from noisy user generated text on social media. Lithium NLP extracts a rich set of information including entities, topics, hashtags and sentiment from text. We discuss several real world applications of the system currently incorporated in Lithium products. We also compare our system with existing commercial and academic NLP systems in terms of performance, information extracted and languages supported. We show that Lithium NLP is at par with and in some cases, outperforms state-of-the-art commercial NLP systems.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we describe the Lithium Natural Language Processing (NLP) system - a resource-constrained, high-throughput and language-agnostic system for information extraction from noisy user generated text on social media. Lithium NLP extracts a rich set of information including entities, topics, hashtags and sentiment from text. We discuss several real world applications of the system currently incorporated in Lithium products. We also compare our system with existing commercial and academic NLP systems in terms of performance, information extracted and languages supported. We show that Lithium NLP is at par with and in some cases, outperforms state-of-the-art commercial NLP systems.
Lithium NLP:一种从社交媒体上嘈杂的用户生成文本中提取丰富信息的系统
在本文中,我们描述了锂自然语言处理(NLP)系统——一个资源受限、高吞吐量和语言无关的系统,用于从社交媒体上嘈杂的用户生成文本中提取信息。Lithium NLP从文本中提取丰富的信息,包括实体、主题、标签和情绪。我们讨论了目前锂产品中包含的系统的几个实际应用。我们还将我们的系统与现有的商业和学术NLP系统在性能、信息提取和语言支持方面进行了比较。我们表明,锂NLP与最先进的商业NLP系统相当,在某些情况下甚至优于最先进的商业NLP系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信