Four Factors Affecting Missing Data Imputation

A. Hackl, Jürgen Zeindl, Lisa Ehrlinger
{"title":"Four Factors Affecting Missing Data Imputation","authors":"A. Hackl, Jürgen Zeindl, Lisa Ehrlinger","doi":"10.1145/3603719.3604285","DOIUrl":null,"url":null,"abstract":"Missing data is a common problem in datasets and impacts the reliability of data analysis. Numerous methods to impute (i.e., predict and replace) missing values have been proposed. The quality of these imputed values depends on factors like correlation, percentage of missingness, or the mechanism behind the missing value. Despite comparative studies on imputation methods, conditions for their effectiveness and safe application lack dedicated investigation. This research aims to systematically investigate the impact of four factors on imputation quality. We specifically investigate the extent to which (1) missing data mechanism, (2) variable distribution, (3) correlation, and (4) percentage of missingness affect the imputation quality of eight different machine-learning-based imputation methods. The evaluation will be done on both a synthetic dataset and a real-world dataset from voestalpine Stahl GmbH.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3604285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing data is a common problem in datasets and impacts the reliability of data analysis. Numerous methods to impute (i.e., predict and replace) missing values have been proposed. The quality of these imputed values depends on factors like correlation, percentage of missingness, or the mechanism behind the missing value. Despite comparative studies on imputation methods, conditions for their effectiveness and safe application lack dedicated investigation. This research aims to systematically investigate the impact of four factors on imputation quality. We specifically investigate the extent to which (1) missing data mechanism, (2) variable distribution, (3) correlation, and (4) percentage of missingness affect the imputation quality of eight different machine-learning-based imputation methods. The evaluation will be done on both a synthetic dataset and a real-world dataset from voestalpine Stahl GmbH.
影响缺失数据输入的四个因素
数据缺失是数据集中常见的问题,影响数据分析的可靠性。已经提出了许多方法来推算(即预测和替换)缺失值。这些输入值的质量取决于相关性、缺失百分比或缺失值背后的机制等因素。尽管对各种归责方法进行了比较研究,但其有效性和安全应用的条件缺乏专门的研究。本研究旨在系统探讨四个因素对imputation质量的影响。我们专门研究了(1)缺失数据机制、(2)变量分布、(3)相关性和(4)缺失百分比对八种不同的基于机器学习的输入方法的输入质量的影响程度。评估将在奥钢联斯塔尔有限公司的合成数据集和实际数据集上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信