A Quantization-Friendly Separable Convolution for MobileNets

Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, M. Aleksic
{"title":"A Quantization-Friendly Separable Convolution for MobileNets","authors":"Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, M. Aleksic","doi":"10.1109/EMC2.2018.00011","DOIUrl":null,"url":null,"abstract":"As deep learning (DL) is being rapidly pushed to edge computing, researchers invented various ways to make inference computation more efficient on mobile/IoT devices, such as network pruning, parameter compression, and etc. Quantization, as one of the key approaches, can effectively offload GPU, and make it possible to deploy DL on fixed-point pipeline. Unfortunately, not all existing networks design are friendly to quantization. For example, the popular lightweight MobileNetV1, while it successfully reduces parameter size and computation latency with separable convolution, our experiment shows its quantized models have large performance gap against its float point models. To resolve this, we analyzed the root cause of quantization loss and proposed a quantization-friendly separable convolution architecture. By evaluating the image classification task on ImageNet2012 dataset, our modified MobileNetV1 model can archive 8-bit inference top-1 accuracy in 68.03%, almost closed the gap to the float pipeline.","PeriodicalId":377872,"journal":{"name":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMC2.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

As deep learning (DL) is being rapidly pushed to edge computing, researchers invented various ways to make inference computation more efficient on mobile/IoT devices, such as network pruning, parameter compression, and etc. Quantization, as one of the key approaches, can effectively offload GPU, and make it possible to deploy DL on fixed-point pipeline. Unfortunately, not all existing networks design are friendly to quantization. For example, the popular lightweight MobileNetV1, while it successfully reduces parameter size and computation latency with separable convolution, our experiment shows its quantized models have large performance gap against its float point models. To resolve this, we analyzed the root cause of quantization loss and proposed a quantization-friendly separable convolution architecture. By evaluating the image classification task on ImageNet2012 dataset, our modified MobileNetV1 model can archive 8-bit inference top-1 accuracy in 68.03%, almost closed the gap to the float pipeline.
一种量化友好的移动网络可分离卷积
随着深度学习(DL)被迅速推向边缘计算,研究人员发明了各种方法来提高移动/物联网设备上的推理计算效率,如网络修剪、参数压缩等。量化作为关键方法之一,可以有效地卸载GPU,使深度学习部署在定点流水线上成为可能。不幸的是,并不是所有现有的网络设计都对量化友好。例如,流行的轻量级MobileNetV1,虽然它通过可分卷积成功地减少了参数大小和计算延迟,但我们的实验表明,它的量化模型与浮点模型相比有很大的性能差距。为了解决这个问题,我们分析了量化损失的根本原因,并提出了一种量化友好的可分离卷积架构。通过对ImageNet2012数据集上的图像分类任务进行评估,我们改进的MobileNetV1模型的8位推理top-1准确率为68.03%,几乎弥补了与浮动管道的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信