An improved recursive algorithm for automatic alignment of complex long audio

He Kejia, Liu Gang, Tang Jie, Guo Jun
{"title":"An improved recursive algorithm for automatic alignment of complex long audio","authors":"He Kejia, Liu Gang, Tang Jie, Guo Jun","doi":"10.1109/ICNIDC.2009.5360838","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for automatic alignment of long audio data with varied acoustic conditions to their corresponding transcripts in an effective manner. Accurate time-aligned transcripts provide easier access to audio materials by aiding applications such as the indexing, summarizing and retrieving of audio segments. Accurate time alignments are also necessary for labeling the training data for a speech recognizer's acoustic model. We provide an improved recursive technique of speech recognition with a gradually self-adaptive language model and acoustic model.","PeriodicalId":127306,"journal":{"name":"2009 IEEE International Conference on Network Infrastructure and Digital Content","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2009.5360838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present an approach for automatic alignment of long audio data with varied acoustic conditions to their corresponding transcripts in an effective manner. Accurate time-aligned transcripts provide easier access to audio materials by aiding applications such as the indexing, summarizing and retrieving of audio segments. Accurate time alignments are also necessary for labeling the training data for a speech recognizer's acoustic model. We provide an improved recursive technique of speech recognition with a gradually self-adaptive language model and acoustic model.
复杂长音频自动对齐的改进递归算法
在本文中,我们提出了一种有效的方法来自动校准具有不同声学条件的长音频数据与其相应的转录本。准确的与时间一致的转录本通过帮助诸如索引、总结和检索音频片段等应用程序,使音频材料更容易访问。准确的时间对齐对于标记语音识别器声学模型的训练数据也是必要的。我们提出了一种改进的递归语音识别技术,该技术采用逐步自适应的语言模型和声学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信