Convolution Based Face Recognition Using DWT and HOG

J. Ravikumar, A. Ramachandra, K. Raja, V. R.
{"title":"Convolution Based Face Recognition Using DWT and HOG","authors":"J. Ravikumar, A. Ramachandra, K. Raja, V. R.","doi":"10.1109/ICIIBMS.2018.8550025","DOIUrl":null,"url":null,"abstract":"Physiological face biometric trait is used to identify a person for many real time applications. The convolution based feature extraction technique for face identification using Discrete Wavelet Transform (DWT) and Histogram of Oriented Gradient (HOG) is proposed to recognize human beings effectively. The four standard face databases with different sizes are considered and resized to $128\\mathrm{X}128$ to have uniform size of images. The 2D-DWT (Two Dimensional Discrete Wavelet Transform) is applied on resized face images and considered only (LL) sub-band. The HOG is applied on LL subband to obtain HOG coefficients. The 2D convolution is used on LL sub-band and HOG matrix to obtain final features. The resized face image is compressed using DWT and HOG. The Euclidean distance(ED) is used to compare features of database face images with test images to compute performance parameters. The performance of the proposed method is better than the existing methods.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8550025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Physiological face biometric trait is used to identify a person for many real time applications. The convolution based feature extraction technique for face identification using Discrete Wavelet Transform (DWT) and Histogram of Oriented Gradient (HOG) is proposed to recognize human beings effectively. The four standard face databases with different sizes are considered and resized to $128\mathrm{X}128$ to have uniform size of images. The 2D-DWT (Two Dimensional Discrete Wavelet Transform) is applied on resized face images and considered only (LL) sub-band. The HOG is applied on LL subband to obtain HOG coefficients. The 2D convolution is used on LL sub-band and HOG matrix to obtain final features. The resized face image is compressed using DWT and HOG. The Euclidean distance(ED) is used to compare features of database face images with test images to compute performance parameters. The performance of the proposed method is better than the existing methods.
基于DWT和HOG的卷积人脸识别
在许多实时应用中,生理面部生物特征被用来识别一个人。提出了一种基于卷积的基于离散小波变换(DWT)和梯度直方图(HOG)的人脸特征提取技术,以有效识别人脸。考虑四个不同大小的标准人脸数据库,并将其大小调整为$128\ mathm {X}128$,以获得统一大小的图像。二维离散小波变换(2D-DWT)应用于调整大小的人脸图像,只考虑(LL)子带。将HOG应用于LL子带,得到HOG系数。对LL子带和HOG矩阵进行二维卷积得到最终特征。调整后的人脸图像使用DWT和HOG进行压缩。利用欧几里得距离(ED)对数据库人脸图像与测试图像进行特征比较,计算性能参数。该方法的性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信