Adaptive WEighting of Signals via One Matrix Entity (AWESOME)

Yao Xie, Jian Li, J. Ward
{"title":"Adaptive WEighting of Signals via One Matrix Entity (AWESOME)","authors":"Yao Xie, Jian Li, J. Ward","doi":"10.1109/RADAR.2007.374304","DOIUrl":null,"url":null,"abstract":"We present the Adaptive WEighting of Signals via One Matrix Entity (AWESOME) algorithm for adaptive array beampattern synthesis. The array geometry can be arbitrary. Compared to the conventional approaches of using data-adaptive weight vectors at the array output for beampattern synthesis, which we refer to as the Vector Weighting Approaches (VWA), weight matrices are used at the array output by AWESOME for much improved flexibility for adaptive array beampattern synthesis. Globally optimal solutions can be determined efficiently for AWESOME due to the convex optimization formulations. AWESOME can be considered as the Semidefinite Relaxation (SDR) of the VWA counterpart. Numerical examples are presented to show that AWESOME allows for strict controls of main-beam shape and peak sidelobe level while retaining the capability of adaptive nulling of strong interferences and jammers.","PeriodicalId":367078,"journal":{"name":"2007 IEEE Radar Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2007.374304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present the Adaptive WEighting of Signals via One Matrix Entity (AWESOME) algorithm for adaptive array beampattern synthesis. The array geometry can be arbitrary. Compared to the conventional approaches of using data-adaptive weight vectors at the array output for beampattern synthesis, which we refer to as the Vector Weighting Approaches (VWA), weight matrices are used at the array output by AWESOME for much improved flexibility for adaptive array beampattern synthesis. Globally optimal solutions can be determined efficiently for AWESOME due to the convex optimization formulations. AWESOME can be considered as the Semidefinite Relaxation (SDR) of the VWA counterpart. Numerical examples are presented to show that AWESOME allows for strict controls of main-beam shape and peak sidelobe level while retaining the capability of adaptive nulling of strong interferences and jammers.
基于一个矩阵实体的信号自适应加权
提出了一种基于单矩阵实体(AWESOME)算法的信号自适应加权算法,用于自适应阵列波束图合成。数组的几何形状可以是任意的。与在阵列输出端使用数据自适应权重向量进行波束图合成的传统方法(我们称之为矢量加权方法(VWA))相比,AWESOME在阵列输出端使用权重矩阵,大大提高了自适应阵列波束图合成的灵活性。由于采用了凸优化公式,可以有效地确定AWESOME的全局最优解。AWESOME可以看作是VWA对应物的半定弛豫(SDR)。数值算例表明,在保留强干扰和干扰的自适应消零能力的同时,AWESOME可以严格控制主波束形状和峰值旁瓣电平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信