Tight asymptotic bounds for the deletion channel with small deletion probabilities

A. Kalai, M. Mitzenmacher, M. Sudan
{"title":"Tight asymptotic bounds for the deletion channel with small deletion probabilities","authors":"A. Kalai, M. Mitzenmacher, M. Sudan","doi":"10.1109/ISIT.2010.5513746","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the capacity C of the binary deletion channel for the limiting case where the deletion probability p goes to 0. It is known that for any p < 1/2, the capacity satisfies C ≥ 1−H(p), where H is the standard binary entropy. We show that this lower bound is essentially tight in the limit, by providing an upper bound C ≤ 1−(1−o(1))H(p), where the o(1) term is understood to be vanishing as p goes to 0. Our proof utilizes a natural counting argument that should prove helpful in analyzing related channels.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In this paper, we consider the capacity C of the binary deletion channel for the limiting case where the deletion probability p goes to 0. It is known that for any p < 1/2, the capacity satisfies C ≥ 1−H(p), where H is the standard binary entropy. We show that this lower bound is essentially tight in the limit, by providing an upper bound C ≤ 1−(1−o(1))H(p), where the o(1) term is understood to be vanishing as p goes to 0. Our proof utilizes a natural counting argument that should prove helpful in analyzing related channels.
具有小删除概率的删除信道的紧渐近界
本文考虑了删除概率p趋于0的极限情况下二进制删除信道的容量C。已知对于任意p < 1/2,容量满足C≥1−H(p),其中H为标准二值熵。我们通过提供上界C≤1−(1−o(1))H(p)来证明这个下界本质上是紧的,其中o(1)项可以理解为在p趋于0时消失。我们的证明使用了一个自然计数论证,这将有助于分析相关通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信