{"title":"Cyclic Proofs for Arithmetical Inductive Definitions","authors":"Anupam Das, Lukas Melgaard","doi":"10.4230/LIPIcs.FSCD.2023.27","DOIUrl":null,"url":null,"abstract":"We investigate the cyclic proof theory of extensions of Peano Arithmetic by (finitely iterated) inductive definitions. Such theories are essential to proof theoretic analyses of certain `impredicative' theories; moreover, our cyclic systems naturally subsume Simpson's Cyclic Arithmetic. Our main result is that cyclic and inductive systems for arithmetical inductive definitions are equally powerful. We conduct a metamathematical argument, formalising the soundness of cyclic proofs within second-order arithmetic by a form of induction on closure ordinals, thence appealing to conservativity results. This approach is inspired by those of Simpson and Das for Cyclic Arithmetic, however we must further address a difficulty: the closure ordinals of our inductive definitions (around Church-Kleene) far exceed the proof theoretic ordinal of the appropriate metatheory (around Bachmann-Howard), so explicit induction on their notations is not possible. For this reason, we rather rely on formalisation of the theory of (recursive) ordinals within second-order arithmetic.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2023.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the cyclic proof theory of extensions of Peano Arithmetic by (finitely iterated) inductive definitions. Such theories are essential to proof theoretic analyses of certain `impredicative' theories; moreover, our cyclic systems naturally subsume Simpson's Cyclic Arithmetic. Our main result is that cyclic and inductive systems for arithmetical inductive definitions are equally powerful. We conduct a metamathematical argument, formalising the soundness of cyclic proofs within second-order arithmetic by a form of induction on closure ordinals, thence appealing to conservativity results. This approach is inspired by those of Simpson and Das for Cyclic Arithmetic, however we must further address a difficulty: the closure ordinals of our inductive definitions (around Church-Kleene) far exceed the proof theoretic ordinal of the appropriate metatheory (around Bachmann-Howard), so explicit induction on their notations is not possible. For this reason, we rather rely on formalisation of the theory of (recursive) ordinals within second-order arithmetic.