Multi-source information integration in intelligent systems using the plausibility measure

Zhimeng Luo, Dehua Li
{"title":"Multi-source information integration in intelligent systems using the plausibility measure","authors":"Zhimeng Luo, Dehua Li","doi":"10.1109/MFI.1994.398426","DOIUrl":null,"url":null,"abstract":"Dempster-Shafer theory of evidence is particularly well suited for the aggregation and integration of information, however, a major disadvantage of this theory is that its time complexity increases geometrically as the number of evidential sources increases, In the paper, we develop a new multisource information fusion scheme using the plausibility measure. The method avoids using Dempster's rule of combination, in order to overcome the intractability of Dempster-Shafer computations, allowing the theory to be feasible in many more applications. A simple robotic vision system with object recognition data from multisensor is presented to highlight benefits of the new method.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Dempster-Shafer theory of evidence is particularly well suited for the aggregation and integration of information, however, a major disadvantage of this theory is that its time complexity increases geometrically as the number of evidential sources increases, In the paper, we develop a new multisource information fusion scheme using the plausibility measure. The method avoids using Dempster's rule of combination, in order to overcome the intractability of Dempster-Shafer computations, allowing the theory to be feasible in many more applications. A simple robotic vision system with object recognition data from multisensor is presented to highlight benefits of the new method.<>
基于可信性测度的智能系统多源信息集成
Dempster-Shafer证据理论特别适合于信息的聚集和集成,然而,该理论的一个主要缺点是随着证据源数量的增加,其时间复杂度呈几何级数增加。在本文中,我们利用可信性度量开发了一种新的多源信息融合方案。该方法避免使用Dempster的组合规则,以克服Dempster- shafer计算的难处,使理论在更多的应用中可行。以一个简单的机器人视觉系统为例,说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信