Audio authentication using the kurtosis of ESPRIT based ENF estimates

Paulo Max Gil Innocencio Reis, J. Costa, R. K. Miranda, G. D. Galdo
{"title":"Audio authentication using the kurtosis of ESPRIT based ENF estimates","authors":"Paulo Max Gil Innocencio Reis, J. Costa, R. K. Miranda, G. D. Galdo","doi":"10.1109/ICSPCS.2016.7843308","DOIUrl":null,"url":null,"abstract":"Digital audio recordings are an important source of evidences related to various crimes and conflicts. The authentication of this source of evidence is often a necessary and critical task, but still subject to many challenges. In order to identify audio tampering we present a new technique to detect deletions and insertions of audio snippets by exploiting anomalous variations in Electric Network Frequency (ENF) estimates of interfering power grid signal in an audio recording under test. The method is based on the hypothesis that insertions and deletions of audio snippets produce phase discontinuities in ENF. Such discontinuities cause abnormal disturbances on the estimated ENF. First we employ an ESPRIT based ENF estimation technique. Next we propose a feature based on the kurtosis of the ESPRIT estimates that measures the outlierness of ENF variations. Finally we propose an automatic detector of ENF disturbance by a linear discriminant. The proposed method outperforms state-of-the-art approach in low signal-to-nose rates scenarios. To asses our results we use a corpus with 100 edited and 100 unedited authorized audio recordings of phone calls named Carioca 1.","PeriodicalId":315765,"journal":{"name":"2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCS.2016.7843308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Digital audio recordings are an important source of evidences related to various crimes and conflicts. The authentication of this source of evidence is often a necessary and critical task, but still subject to many challenges. In order to identify audio tampering we present a new technique to detect deletions and insertions of audio snippets by exploiting anomalous variations in Electric Network Frequency (ENF) estimates of interfering power grid signal in an audio recording under test. The method is based on the hypothesis that insertions and deletions of audio snippets produce phase discontinuities in ENF. Such discontinuities cause abnormal disturbances on the estimated ENF. First we employ an ESPRIT based ENF estimation technique. Next we propose a feature based on the kurtosis of the ESPRIT estimates that measures the outlierness of ENF variations. Finally we propose an automatic detector of ENF disturbance by a linear discriminant. The proposed method outperforms state-of-the-art approach in low signal-to-nose rates scenarios. To asses our results we use a corpus with 100 edited and 100 unedited authorized audio recordings of phone calls named Carioca 1.
使用基于ENF估计的ESPRIT峰度的音频认证
数字录音是各种犯罪和冲突的重要证据来源。对这一证据来源的鉴定往往是一项必要和关键的任务,但仍然面临许多挑战。为了识别音频篡改,我们提出了一种新的技术,通过利用被测音频记录中干扰电网信号的网络频率(ENF)估计的异常变化来检测音频片段的删除和插入。该方法基于音频片段的插入和删除在ENF中产生相位不连续的假设。这种不连续会对估计的ENF造成异常扰动。首先,我们采用了基于ESPRIT的ENF估计技术。接下来,我们提出了一个基于ESPRIT估计峰度的特征,用于测量ENF变化的异常值。最后提出了一种基于线性判别法的ENF干扰自动检测方法。该方法在低信鼻率情况下优于最先进的方法。为了评估我们的结果,我们使用了一个名为Carioca 1的语料库,其中包含100个经过编辑和100个未经编辑的授权电话录音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信