The method of micro-blog article retrieval based on text similarity

Ruocheng Wang, Yanhua Liu
{"title":"The method of micro-blog article retrieval based on text similarity","authors":"Ruocheng Wang, Yanhua Liu","doi":"10.1109/ICSAI.2017.8248531","DOIUrl":null,"url":null,"abstract":"With the growth of micro-blog users, the number of micro-blog text is also showing an explosive growth trend. Faced with such a large amount of text data, how to effectively retrieve useful information is very important for micro-blog users. This paper proposes a method combining traditional TF-IDF computing and LDA topic model. First, we compute by TF-IDF to find micro-blog articles about word frequency similarity. Then we use the LDA topic model approach to filter out micro-blog articles with similar themes. Experimental results show that using the integrated search method, users can retrieve more suitable user's actual needs micro-blog articles.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growth of micro-blog users, the number of micro-blog text is also showing an explosive growth trend. Faced with such a large amount of text data, how to effectively retrieve useful information is very important for micro-blog users. This paper proposes a method combining traditional TF-IDF computing and LDA topic model. First, we compute by TF-IDF to find micro-blog articles about word frequency similarity. Then we use the LDA topic model approach to filter out micro-blog articles with similar themes. Experimental results show that using the integrated search method, users can retrieve more suitable user's actual needs micro-blog articles.
基于文本相似度的微博文章检索方法
随着微博用户的增长,微博文字的数量也呈现出爆发式的增长趋势。面对如此庞大的文本数据,如何有效地检索有用的信息对于微博用户来说是非常重要的。本文提出了一种将传统TF-IDF计算与LDA主题模型相结合的方法。首先,我们通过TF-IDF计算找到微博文章的词频相似度。然后,我们使用LDA主题模型方法过滤出具有相似主题的微博文章。实验结果表明,采用集成搜索方法,用户可以检索到更多适合用户实际需求的微博文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信