Application of the Cox proportional hazards model and competing risks models to critical illness insurance data

David Zapletal
{"title":"Application of the Cox proportional hazards model and competing risks models to critical illness insurance data","authors":"David Zapletal","doi":"10.1002/sam.11532","DOIUrl":null,"url":null,"abstract":"A commercial insurance company in the Czech Republic provided data on critical illness insurance. The survival analysis was used to study the influence of the gender of an insured person, the age at which the person entered into an insurance contract, and the region where the insured person lived on the occurrence of an insured event. The main goal of the research was to investigate whether the influence of explanatory variables is estimated differently when two different approaches of analysis are used. The two approaches used were (1) the Cox proportional hazard model that does not assign a specific cause, such as a certain diagnosis, to a critical illness insured event and (2) the competing risks models. Regression models related to these approaches were estimated by R software. The results, which are discussed and compared in the paper, show that insurance companies might benefit from offering policies that consider specific diagnoses as the cause of insured events. They also show that in addition to age, the gender of the client plays a key role in the occurrence of such insured events.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A commercial insurance company in the Czech Republic provided data on critical illness insurance. The survival analysis was used to study the influence of the gender of an insured person, the age at which the person entered into an insurance contract, and the region where the insured person lived on the occurrence of an insured event. The main goal of the research was to investigate whether the influence of explanatory variables is estimated differently when two different approaches of analysis are used. The two approaches used were (1) the Cox proportional hazard model that does not assign a specific cause, such as a certain diagnosis, to a critical illness insured event and (2) the competing risks models. Regression models related to these approaches were estimated by R software. The results, which are discussed and compared in the paper, show that insurance companies might benefit from offering policies that consider specific diagnoses as the cause of insured events. They also show that in addition to age, the gender of the client plays a key role in the occurrence of such insured events.
Cox比例风险模型和竞争风险模型在重大疾病保险数据中的应用
捷克共和国的一家商业保险公司提供了关于重大疾病保险的数据。生存分析用于研究被保险人的性别、被保险人签订保险合同的年龄和被保险人居住的地区对保险事件发生的影响。本研究的主要目的是探讨当使用两种不同的分析方法时,解释变量的影响是否有不同的估计。使用的两种方法是:(1)Cox比例风险模型,该模型不为重大疾病保险事件分配特定原因,例如某种诊断;(2)竞争风险模型。用R软件估计与这些方法相关的回归模型。本文对结果进行了讨论和比较,结果表明,保险公司可能会受益于提供将特定诊断作为保险事件原因的政策。他们还表明,除了年龄之外,客户的性别在此类保险事件的发生中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信