Application of Machine Learning for Aviation Safety Risk Metric

Firdu Bati, Lauren Withington
{"title":"Application of Machine Learning for Aviation Safety Risk Metric","authors":"Firdu Bati, Lauren Withington","doi":"10.1109/DASC43569.2019.9081657","DOIUrl":null,"url":null,"abstract":"A risk metric is one of the key tools to monitor the safety performance of complex systems. This paper explains the methodologies employed to develop a new comprehensive risk metric based on Machine Learning to measure the safety performance of the National Airspace System (NAS) in the airport surface environment. Unlike existing metrics that focus primarily on incidents and close calls, this metric incorporates all relevant surface incidents and accidents and assigns an appropriate severity measure proportional to their consequences and in relation to a potential worst outcome of an accident.","PeriodicalId":129864,"journal":{"name":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC43569.2019.9081657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A risk metric is one of the key tools to monitor the safety performance of complex systems. This paper explains the methodologies employed to develop a new comprehensive risk metric based on Machine Learning to measure the safety performance of the National Airspace System (NAS) in the airport surface environment. Unlike existing metrics that focus primarily on incidents and close calls, this metric incorporates all relevant surface incidents and accidents and assigns an appropriate severity measure proportional to their consequences and in relation to a potential worst outcome of an accident.
机器学习在航空安全风险度量中的应用
风险度量是监测复杂系统安全性能的关键工具之一。本文解释了用于开发基于机器学习的新的综合风险度量的方法,以测量机场地面环境中国家空域系统(NAS)的安全性能。与现有的主要关注事件和死里逃生的指标不同,该指标纳入了所有相关的地面事件和事故,并根据事故的后果和潜在的最坏结果分配了适当的严重程度指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信