Feedback Guided Dynamic Integral Partition

S. Tabirca, T. Tabirca, L. Yang, Len Freeman
{"title":"Feedback Guided Dynamic Integral Partition","authors":"S. Tabirca, T. Tabirca, L. Yang, Len Freeman","doi":"10.1109/ISPDC.2006.26","DOIUrl":null,"url":null,"abstract":"In this article we introduce a new iterative method for integral partition called the feedback guided dynamic integral partition (FGDIP) algorithm. The problem to study is the partition of a definite integral into p identical sub-integrals. The method generates iteratively a sequence of integral bounds by re-balancing the previous integral partition to achieve a better one. A simple convergence condition is also proposed. Experimental results show that the proposed method FGDIP achieves better performance than the classical Newton's method","PeriodicalId":196790,"journal":{"name":"2006 Fifth International Symposium on Parallel and Distributed Computing","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Fifth International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2006.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article we introduce a new iterative method for integral partition called the feedback guided dynamic integral partition (FGDIP) algorithm. The problem to study is the partition of a definite integral into p identical sub-integrals. The method generates iteratively a sequence of integral bounds by re-balancing the previous integral partition to achieve a better one. A simple convergence condition is also proposed. Experimental results show that the proposed method FGDIP achieves better performance than the classical Newton's method
反馈导向动态积分划分
本文介绍了一种新的积分划分迭代方法——反馈导向动态积分划分算法。要研究的问题是将一个定积分分解成p个相同的子积分。该方法通过对先前的积分划分进行重新平衡,从而迭代生成一个更好的积分划分序列。提出了一个简单的收敛条件。实验结果表明,FGDIP方法比经典牛顿方法具有更好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信