23.7 A time-based receiver with 2-tap DFE for a 12Gb/s/pin single-ended transceiver of mobile DRAM interface in 0.8V 65nm CMOS

Il-Min Yi, Min-Kyun Chae, S. Hyun, Seung-Jun Bae, J. Choi, Seong-Jin Jang, Byungsub Kim, J. Sim, Hong-June Park
{"title":"23.7 A time-based receiver with 2-tap DFE for a 12Gb/s/pin single-ended transceiver of mobile DRAM interface in 0.8V 65nm CMOS","authors":"Il-Min Yi, Min-Kyun Chae, S. Hyun, Seung-Jun Bae, J. Choi, Seong-Jin Jang, Byungsub Kim, J. Sim, Hong-June Park","doi":"10.1109/ISSCC.2017.7870430","DOIUrl":null,"url":null,"abstract":"Single-ended transceivers are mostly used for DRAM interfaces to reduce pin count. A low-supply transceiver is preferred, especially for mobile DRAM interfaces, for low-power consumption while maintaining a high-speed interface for transmission of image data [1]. To reduce transmitter power in single-ended transceivers, both the supply voltage and the signal swing are reduced: 0.8V and 200mV, or below [2]. However, with a small signal swing the low-supply voltage limits the maximum data rate that can be handled by the receiver (RX); the maximum data rate reported is below 10Gb/s with a supply voltage of 0.8V in 65nm CMOS [2-4]. In a conventional RX at a low-supply voltage, the maximum data rate is limited by the small gm/C of the RX front-end circuit. To eliminate this gm/C constraint, this work proposes a time-based RX for 12Gb/s operation at 0.8V.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Single-ended transceivers are mostly used for DRAM interfaces to reduce pin count. A low-supply transceiver is preferred, especially for mobile DRAM interfaces, for low-power consumption while maintaining a high-speed interface for transmission of image data [1]. To reduce transmitter power in single-ended transceivers, both the supply voltage and the signal swing are reduced: 0.8V and 200mV, or below [2]. However, with a small signal swing the low-supply voltage limits the maximum data rate that can be handled by the receiver (RX); the maximum data rate reported is below 10Gb/s with a supply voltage of 0.8V in 65nm CMOS [2-4]. In a conventional RX at a low-supply voltage, the maximum data rate is limited by the small gm/C of the RX front-end circuit. To eliminate this gm/C constraint, this work proposes a time-based RX for 12Gb/s operation at 0.8V.
23.7用于移动DRAM接口12Gb/s/引脚单端收发器的基于时间的2抽头DFE接收器,采用0.8V 65nm CMOS
单端收发器主要用于DRAM接口,以减少引脚数。低功耗收发器是首选,特别是对于移动DRAM接口,在保持高速接口传输图像数据的同时,功耗更低[1]。在单端收发器中,为了降低发射机功率,电源电压和信号摆幅都降低:0.8V和200mV以下[2]。然而,由于信号摆幅小,低电源电压限制了接收器(RX)可以处理的最大数据速率;在65nm CMOS电源电压为0.8V时,报告的最大数据速率低于10Gb/s[2-4]。在传统的RX中,在低电源电压下,最大数据速率受到RX前端电路的小gm/C的限制。为了消除这种gm/C限制,本工作提出了一个基于时间的RX,在0.8V下运行12Gb/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信