{"title":"Deep Reinforcement Learning Based Adaptive 360-degree Video Streaming with Field of View Joint Prediction","authors":"Yuanhong Zhang, Zhiwen Wang, Junquan Liu, Haipeng Du, Qinghua Zheng, Weizhan Zhang","doi":"10.1109/ISCC55528.2022.9913007","DOIUrl":null,"url":null,"abstract":"With the development of 360-degree video and HTTP adaptive streaming (HAS), tile-based adaptive 360-degree video streaming has become a promising paradigm for reducing the bandwidth consumption of delivering the panoramic video content. However, there are two main challenges for the adaptive 360-degree video streaming, accurate long-term prediction of the future field of view (Fo V) and optimal adaptive bitrate (ABR) transmission strategy. In this paper, we propose an attention-based multi-user Fo V joint prediction approach to improve the accuracy, establishing a probability model of watching video tiles for users and applying Long Short-Term Memory (LSTM) network and DBSCAN clustering method. Furthermore, we present an adaptive 360-degree video streaming approach based on deep reinforcement learning (DRL), using A3C algorithm to optimize the QoE. The real-world trace-driven experiments demonstrate that our approach achieves about 8 % gains on user Fo V prediction precision and an increase at least 20 % on user QoE compared with the benchmarks.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9913007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the development of 360-degree video and HTTP adaptive streaming (HAS), tile-based adaptive 360-degree video streaming has become a promising paradigm for reducing the bandwidth consumption of delivering the panoramic video content. However, there are two main challenges for the adaptive 360-degree video streaming, accurate long-term prediction of the future field of view (Fo V) and optimal adaptive bitrate (ABR) transmission strategy. In this paper, we propose an attention-based multi-user Fo V joint prediction approach to improve the accuracy, establishing a probability model of watching video tiles for users and applying Long Short-Term Memory (LSTM) network and DBSCAN clustering method. Furthermore, we present an adaptive 360-degree video streaming approach based on deep reinforcement learning (DRL), using A3C algorithm to optimize the QoE. The real-world trace-driven experiments demonstrate that our approach achieves about 8 % gains on user Fo V prediction precision and an increase at least 20 % on user QoE compared with the benchmarks.