Dirichlet Process Mixture Models for lexical category acquisition

Bichuan Zhang, Xiaojie Wang, Guannan Fang
{"title":"Dirichlet Process Mixture Models for lexical category acquisition","authors":"Bichuan Zhang, Xiaojie Wang, Guannan Fang","doi":"10.1109/CCIS.2011.6045045","DOIUrl":null,"url":null,"abstract":"In this work, we apply Dirichlet Process Mixture Models (DPMMs) to a cognitive computational task in natural language processing (NLP): lexical category acquisition. The model takes a corpus of child-directed speech from CHILDES as input. We assess the performance using a new measure we proposed that meets three criteria: informativeness, diversity and purity. The quantitative and qualitative evaluation performed highlights the choice of the feature dimension and inherent parameters can influence the performance of DPMMs towards lexical category solutions.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we apply Dirichlet Process Mixture Models (DPMMs) to a cognitive computational task in natural language processing (NLP): lexical category acquisition. The model takes a corpus of child-directed speech from CHILDES as input. We assess the performance using a new measure we proposed that meets three criteria: informativeness, diversity and purity. The quantitative and qualitative evaluation performed highlights the choice of the feature dimension and inherent parameters can influence the performance of DPMMs towards lexical category solutions.
词汇范畴习得的Dirichlet过程混合模型
在这项工作中,我们将Dirichlet过程混合模型(DPMMs)应用于自然语言处理(NLP)中的认知计算任务:词汇类别习得。该模型将来自CHILDES的儿童导向语音语料库作为输入。我们使用我们提出的符合三个标准的新措施来评估绩效:信息性、多样性和纯度。定量和定性评价表明,特征维度和固有参数的选择会影响DPMMs对词法类别解决方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信