How Does Oversampling Affect the Performance of Classification Algorithms?

Zhizheng Xiang, Yingying Xu, Zhenzhou Tang
{"title":"How Does Oversampling Affect the Performance of Classification Algorithms?","authors":"Zhizheng Xiang, Yingying Xu, Zhenzhou Tang","doi":"10.1109/ISCC58397.2023.10218099","DOIUrl":null,"url":null,"abstract":"To address the issue of imbalanced datasets classification, this study explores how different oversampling algorithms and imbalance ratios affect the performance of classification algorithms. Two oversampling algorithms, including random oversampling and Synthetic Minority Oversampling Technique (SMOTE), are used to adjust the imbalance ratio of the training dataset to 999:1, 99:1, 9:1, 3:1, and 1:1. Four classification methods, including the Convolutional Neural Network, Vision Transformer, XGBoost and CatBoost, are evaluated using performance metrics such as precision, recall, AUC, and F2-Score. We conduct more than 240 experiments and observe that oversampling ratio has a significant positive impact on AUC and recall rate, but a negative impact on precision. The study also identifies the best oversampling algorithm and imbalance ratio for each classification algorithm. It is noteworthy that the Vision Transformer algorithm used in this study has not been employed in previous research on imbalanced data classification.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issue of imbalanced datasets classification, this study explores how different oversampling algorithms and imbalance ratios affect the performance of classification algorithms. Two oversampling algorithms, including random oversampling and Synthetic Minority Oversampling Technique (SMOTE), are used to adjust the imbalance ratio of the training dataset to 999:1, 99:1, 9:1, 3:1, and 1:1. Four classification methods, including the Convolutional Neural Network, Vision Transformer, XGBoost and CatBoost, are evaluated using performance metrics such as precision, recall, AUC, and F2-Score. We conduct more than 240 experiments and observe that oversampling ratio has a significant positive impact on AUC and recall rate, but a negative impact on precision. The study also identifies the best oversampling algorithm and imbalance ratio for each classification algorithm. It is noteworthy that the Vision Transformer algorithm used in this study has not been employed in previous research on imbalanced data classification.
过采样如何影响分类算法的性能?
为了解决不平衡数据集分类问题,本研究探讨了不同的过采样算法和不平衡比例对分类算法性能的影响。采用随机过采样和合成少数派过采样技术(SMOTE)两种过采样算法,将训练数据集的不平衡比例调整为999:1、99:1、9:1、3:1和1:1。四种分类方法,包括卷积神经网络,视觉变压器,XGBoost和CatBoost,使用精度,召回率,AUC和F2-Score等性能指标进行评估。我们进行了240多个实验,观察到过采样率对AUC和召回率有显著的正影响,但对准确率有负影响。研究还确定了每种分类算法的最佳过采样算法和失衡比例。值得注意的是,本研究中使用的Vision Transformer算法并没有在以往的不平衡数据分类研究中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信