EPD Similarity Measure and Demons Algorithm for Object-Based Motion Estimation

Md. Asikuzzaman, A. Suman, M. Pickering
{"title":"EPD Similarity Measure and Demons Algorithm for Object-Based Motion Estimation","authors":"Md. Asikuzzaman, A. Suman, M. Pickering","doi":"10.1109/DICTA.2018.8615826","DOIUrl":null,"url":null,"abstract":"Reduction of the temporal redundancies among frames, which can be achieved by the proper motion-compensated prediction, is the key to efficient video compression. Image registration is a technique, which can be exploited to find the motion between the frames. As the motion of an individual scene in a frame is varying across time, it is important to find the motion of the individual object for efficient motion-compensated prediction instead of finding the global motion in a video frame as has been used in the video coding literature. In this paper, we propose a motion estimation technique for video coding that estimates the correct motion of the individual object rather than estimating the motion of the combination of objects in the frame. This method adopts a registration technique using a new edge position difference (EPD) similarity measure to separate the region of individual objects in the frame. Then we apply either EPD-based registration or the Demons registration algorithm to estimate the true motion of each object in the frame. Experimental results show that the proposed EPD-Demons registration algorithm achieves superior motion-compensated prediction of a frame when compared to the global motion estimation-based approach.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Reduction of the temporal redundancies among frames, which can be achieved by the proper motion-compensated prediction, is the key to efficient video compression. Image registration is a technique, which can be exploited to find the motion between the frames. As the motion of an individual scene in a frame is varying across time, it is important to find the motion of the individual object for efficient motion-compensated prediction instead of finding the global motion in a video frame as has been used in the video coding literature. In this paper, we propose a motion estimation technique for video coding that estimates the correct motion of the individual object rather than estimating the motion of the combination of objects in the frame. This method adopts a registration technique using a new edge position difference (EPD) similarity measure to separate the region of individual objects in the frame. Then we apply either EPD-based registration or the Demons registration algorithm to estimate the true motion of each object in the frame. Experimental results show that the proposed EPD-Demons registration algorithm achieves superior motion-compensated prediction of a frame when compared to the global motion estimation-based approach.
基于目标运动估计的EPD相似度量和Demons算法
通过适当的运动补偿预测来减少帧间的时间冗余是实现高效视频压缩的关键。图像配准是一种可以用来寻找帧间运动的技术。由于帧中单个场景的运动随时间而变化,因此找到单个对象的运动以进行有效的运动补偿预测是很重要的,而不是像视频编码文献中使用的那样在视频帧中找到全局运动。在本文中,我们提出了一种用于视频编码的运动估计技术,该技术可以估计单个物体的正确运动,而不是估计帧中物体组合的运动。该方法采用一种新的边缘位置差(EPD)相似度测度的配准技术来分离图像中单个目标的区域。然后应用基于epd的配准算法或Demons配准算法来估计帧中每个物体的真实运动。实验结果表明,与基于全局运动估计的方法相比,提出的EPD-Demons配准算法实现了更好的帧运动补偿预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信