Packet Format Detection and Modulation Classification of Wireless LAN Using Distributed Convolutional Neural Network

Dody Ichwana Putra, Muhammad Harry Bintang Pratama, L. Lanante, H. Ochi
{"title":"Packet Format Detection and Modulation Classification of Wireless LAN Using Distributed Convolutional Neural Network","authors":"Dody Ichwana Putra, Muhammad Harry Bintang Pratama, L. Lanante, H. Ochi","doi":"10.1109/ISPACS51563.2021.9651091","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to detect the packet format and classify signal modulation type of wireless LAN signals using the distributed model of Convolutional Neural Network (CNN). The main advantages of this method compared to the conventional are the high accuracy of the model and the flexibility for lowering the complexity. These are achieved because the CNN models are trained to perform multiple small classification tasks instead of a single big classification task. This method makes retraining much easier. The five-fold cross-validation is applied to assess the performance for training and testing the model. To validate the model, actual Wi-Fi signals are used to test the model using Software Define Radio (SDR). The result shows the proposed method can accurately classify different packet formats and signal modulation types above 90%, even when different timing offsets occur.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a method to detect the packet format and classify signal modulation type of wireless LAN signals using the distributed model of Convolutional Neural Network (CNN). The main advantages of this method compared to the conventional are the high accuracy of the model and the flexibility for lowering the complexity. These are achieved because the CNN models are trained to perform multiple small classification tasks instead of a single big classification task. This method makes retraining much easier. The five-fold cross-validation is applied to assess the performance for training and testing the model. To validate the model, actual Wi-Fi signals are used to test the model using Software Define Radio (SDR). The result shows the proposed method can accurately classify different packet formats and signal modulation types above 90%, even when different timing offsets occur.
基于分布式卷积神经网络的无线局域网数据包格式检测与调制分类
本文提出了一种利用卷积神经网络(CNN)的分布式模型对无线局域网信号进行分组格式检测和信号调制类型分类的方法。与传统方法相比,该方法的主要优点是模型精度高,并且具有降低复杂性的灵活性。这是因为CNN模型被训练来执行多个小型分类任务,而不是单个大型分类任务。这种方法使再培训更加容易。应用五重交叉验证来评估模型的训练和测试性能。为了验证模型,使用实际的Wi-Fi信号使用软件定义无线电(SDR)对模型进行测试。结果表明,即使存在不同的时序偏移,该方法对不同的分组格式和信号调制类型的分类准确率在90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信