A comparative study of attribute weighting heuristics for effort estimation by analogy

Jingzhou Li, G. Ruhe
{"title":"A comparative study of attribute weighting heuristics for effort estimation by analogy","authors":"Jingzhou Li, G. Ruhe","doi":"10.1145/1159733.1159746","DOIUrl":null,"url":null,"abstract":"Five heuristics for attribute weighting in analogy-based effort estimation are evaluated in this paper. The baseline heuristic involves using all attributes with equal weights. We propose four additional heuristics that use rough set analysis for attribute weighting. These five heuristics are evaluated over five data sets related to software projects. Three of the data sets are publicly available, hence allowing comparison with other methods. The results indicate that three of the rough set analysis based heuristics perform better than the equal weights heuristic. This evaluation is based on an integrated measure of accuracy.","PeriodicalId":201305,"journal":{"name":"International Symposium on Empirical Software Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Empirical Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1159733.1159746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Five heuristics for attribute weighting in analogy-based effort estimation are evaluated in this paper. The baseline heuristic involves using all attributes with equal weights. We propose four additional heuristics that use rough set analysis for attribute weighting. These five heuristics are evaluated over five data sets related to software projects. Three of the data sets are publicly available, hence allowing comparison with other methods. The results indicate that three of the rough set analysis based heuristics perform better than the equal weights heuristic. This evaluation is based on an integrated measure of accuracy.
基于属性加权的启发式类比估算方法的比较研究
本文对基于类比的工作量估计中属性加权的五种启发式方法进行了评价。基线启发式涉及使用具有相同权重的所有属性。我们提出了另外四种使用粗糙集分析进行属性加权的启发式方法。这五种启发式方法在与软件项目相关的五个数据集上进行评估。其中三个数据集是公开的,因此可以与其他方法进行比较。结果表明,三种基于粗糙集分析的启发式算法的性能优于等权启发式算法。这种评估是基于对准确性的综合衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信