Using domain ontology for semantic web usage mining and next page prediction

Nizar R. Mabroukeh, C. Ezeife
{"title":"Using domain ontology for semantic web usage mining and next page prediction","authors":"Nizar R. Mabroukeh, C. Ezeife","doi":"10.1145/1645953.1646202","DOIUrl":null,"url":null,"abstract":"This paper proposes the integration of semantic information drawn from a web application's domain knowledge into all phases of the web usage mining process (preprocessing, pattern discovery, and recommendation/prediction). The goal is to have an intelligent semantics-aware web usage mining framework. This is accomplished by using semantic information in the sequential pattern mining algorithm to prune the search space and partially relieve the algorithm from support counting. In addition, semantic information is used in the prediction phase with low order Markov models, for less space complexity and accurate prediction, that will help ambiguous predictions problem. Experimental results show that semantics-aware sequential pattern mining algorithms can perform 4 times faster than regular non-semantics-aware algorithms with only 26% of the memory requirement.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This paper proposes the integration of semantic information drawn from a web application's domain knowledge into all phases of the web usage mining process (preprocessing, pattern discovery, and recommendation/prediction). The goal is to have an intelligent semantics-aware web usage mining framework. This is accomplished by using semantic information in the sequential pattern mining algorithm to prune the search space and partially relieve the algorithm from support counting. In addition, semantic information is used in the prediction phase with low order Markov models, for less space complexity and accurate prediction, that will help ambiguous predictions problem. Experimental results show that semantics-aware sequential pattern mining algorithms can perform 4 times faster than regular non-semantics-aware algorithms with only 26% of the memory requirement.
利用领域本体进行语义web使用挖掘和下一页预测
本文提出将从web应用程序的领域知识中提取的语义信息集成到web使用挖掘过程的各个阶段(预处理、模式发现和推荐/预测)。目标是拥有一个智能的语义感知web使用挖掘框架。这是通过使用顺序模式挖掘算法中的语义信息来减少搜索空间并部分减轻算法的支持计数来实现的。此外,在预测阶段使用低阶马尔可夫模型的语义信息,以减少空间复杂度和准确的预测,这将有助于模糊的预测问题。实验结果表明,语义感知序列模式挖掘算法的执行速度是常规非语义感知算法的4倍,而内存需求仅为常规非语义感知算法的26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信