Muhong Huang, Runchao Han, Zhiqiang Du, Yanfang Fu, Liangxin Liu
{"title":"Reputation-based state machine replication","authors":"Muhong Huang, Runchao Han, Zhiqiang Du, Yanfang Fu, Liangxin Liu","doi":"10.1109/NCA57778.2022.10013518","DOIUrl":null,"url":null,"abstract":"State machine replication (SMR) allows nodes to jointly maintain a consistent ledger, even when a part of nodes are Byzantine. To defend against and/or limit the impact of attacks launched by Byzantine nodes, there have been blocks that combine reputation mechanisms to SMR, where each node has a reputation value based on its historical behaviours, and the node’s voting power will be proportional to its reputation. Despite the promising features of reputation-based SMR, existing studies do not provide formal treatment on the reputation mechanism on SMR protocols, including the types of behaviours affecting the reputation, the security properties of the reputation mechanism, and the extra security properties of SMR using reputation mechanisms.In this paper, we provide the first formal study on the reputation-based SMR. We define the security properties of the reputation mechanism w.r.t. these misbehaviours. Based on the formalisation of the reputation mechanism, we formally define the reputation-based SMR, and identify a new property reputation-consistency that is necessary for ensuring reputation-based SMR’s safety. We then design a simple reputation mechanism that achieves all security properties in our formal model. To demonstrate the practicality, we combine our reputation mechanism to the Sync-HotStuff SMR protocol, yielding a simple and efficient reputation-based SMR at the cost of only an extra ∆ in latency, where ∆ is the maximum delay in synchronous networks.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
State machine replication (SMR) allows nodes to jointly maintain a consistent ledger, even when a part of nodes are Byzantine. To defend against and/or limit the impact of attacks launched by Byzantine nodes, there have been blocks that combine reputation mechanisms to SMR, where each node has a reputation value based on its historical behaviours, and the node’s voting power will be proportional to its reputation. Despite the promising features of reputation-based SMR, existing studies do not provide formal treatment on the reputation mechanism on SMR protocols, including the types of behaviours affecting the reputation, the security properties of the reputation mechanism, and the extra security properties of SMR using reputation mechanisms.In this paper, we provide the first formal study on the reputation-based SMR. We define the security properties of the reputation mechanism w.r.t. these misbehaviours. Based on the formalisation of the reputation mechanism, we formally define the reputation-based SMR, and identify a new property reputation-consistency that is necessary for ensuring reputation-based SMR’s safety. We then design a simple reputation mechanism that achieves all security properties in our formal model. To demonstrate the practicality, we combine our reputation mechanism to the Sync-HotStuff SMR protocol, yielding a simple and efficient reputation-based SMR at the cost of only an extra ∆ in latency, where ∆ is the maximum delay in synchronous networks.