Power Flow Simulation of DC Railway Power Supply Systems with Regenerative Braking

Fulin Fan, B. Stewart
{"title":"Power Flow Simulation of DC Railway Power Supply Systems with Regenerative Braking","authors":"Fulin Fan, B. Stewart","doi":"10.1109/MELECON48756.2020.9140462","DOIUrl":null,"url":null,"abstract":"The energy efficiency of a railway electrification system can be improved by the recovery of regenerative braking energy which is converted from the mechanical energy of braking trains. In a direct current (DC) railway power supply system, the regenerated energy which would otherwise be dissipated as heat in braking resistors may be consumed by surrounding accelerating trains, stored by energy storage systems, or fed back to upstream alternative current (AC) sides via reversible substations (RSS). It is necessary to evaluate the benefits related to energy savings achieved by the installation of RSS due to the high cost of initial investment. This paper models DC railway power supply systems in Simulink to simulate power flows within the systems in different scenarios with or without the deployment of RSS. Pantograph voltages of trains and power exchange between AC and DC sides are analysed to illustrate the effectiveness of the developed models and the limits on the braking energy recovery.","PeriodicalId":268311,"journal":{"name":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON48756.2020.9140462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The energy efficiency of a railway electrification system can be improved by the recovery of regenerative braking energy which is converted from the mechanical energy of braking trains. In a direct current (DC) railway power supply system, the regenerated energy which would otherwise be dissipated as heat in braking resistors may be consumed by surrounding accelerating trains, stored by energy storage systems, or fed back to upstream alternative current (AC) sides via reversible substations (RSS). It is necessary to evaluate the benefits related to energy savings achieved by the installation of RSS due to the high cost of initial investment. This paper models DC railway power supply systems in Simulink to simulate power flows within the systems in different scenarios with or without the deployment of RSS. Pantograph voltages of trains and power exchange between AC and DC sides are analysed to illustrate the effectiveness of the developed models and the limits on the braking energy recovery.
带再生制动的直流铁路供电系统潮流仿真
利用列车制动机械能转化的再生制动能,可以提高铁路电气化系统的能源效率。在直流(DC)铁路供电系统中,再生的能量本来会作为制动电阻中的热量消散,但可能会被周围的加速列车消耗,被储能系统存储,或通过可逆变电站(RSS)反馈到上游的交流(AC)侧。由于初始投资成本高,有必要评估安装RSS所带来的节能效益。本文在Simulink中对直流铁路供电系统进行了建模,模拟了在有或没有部署RSS的情况下系统内部的潮流。分析了列车的受电弓电压和交直流侧的功率交换,说明了所建立模型的有效性和制动能量回收的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信