Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

Saeedeh Shekarpour, Konrad Höffner, Jens Lehmann, S. Auer
{"title":"Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features","authors":"Saeedeh Shekarpour, Konrad Höffner, Jens Lehmann, S. Auer","doi":"10.1109/ICSC.2013.41","DOIUrl":null,"url":null,"abstract":"Effective search in structured information based on textual user input is of high importance in thousands of applications. Query expansion methods augment the original query of a user with alternative query elements with similar meaning to increase the chance of retrieving appropriate resources. In this work, we introduce a number of new query expansion features based on semantic and linguistic inferencing over Linked Open Data. We evaluate the effectiveness of each feature individually as well as their combinations employing several machine learning approaches. The evaluation is carried out on a training dataset extracted from the QALD question answering benchmark. Furthermore, we propose an optimized linear combination of linguistic and lightweight semantic features in order to predict the usefulness of each expansion candidate. Our experimental study shows a considerable improvement in precision and recall over baseline approaches.","PeriodicalId":189682,"journal":{"name":"2013 IEEE Seventh International Conference on Semantic Computing","volume":"53 39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Seventh International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2013.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Effective search in structured information based on textual user input is of high importance in thousands of applications. Query expansion methods augment the original query of a user with alternative query elements with similar meaning to increase the chance of retrieving appropriate resources. In this work, we introduce a number of new query expansion features based on semantic and linguistic inferencing over Linked Open Data. We evaluate the effectiveness of each feature individually as well as their combinations employing several machine learning approaches. The evaluation is carried out on a training dataset extracted from the QALD question answering benchmark. Furthermore, we propose an optimized linear combination of linguistic and lightweight semantic features in order to predict the usefulness of each expansion candidate. Our experimental study shows a considerable improvement in precision and recall over baseline approaches.
基于语言和语义特征的关联数据关键字查询扩展
基于文本用户输入的结构化信息的有效搜索在成千上万的应用程序中非常重要。查询扩展方法使用具有相似含义的可选查询元素扩展用户的原始查询,以增加检索适当资源的机会。在这项工作中,我们引入了一些新的基于关联开放数据的语义和语言推理的查询扩展功能。我们使用几种机器学习方法单独评估每个特征的有效性以及它们的组合。评估是在从QALD问答基准提取的训练数据集上进行的。此外,我们提出了语言和轻量级语义特征的优化线性组合,以预测每个扩展候选的有用性。我们的实验研究表明,与基线方法相比,精确度和召回率有了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信