V. N. Ioannidis, Panagiotis A. Traganitis, Yanning Shen, G. Giannakis
{"title":"Kernel-Based Semi-Supervised Learning Over Multilayer Graphs","authors":"V. N. Ioannidis, Panagiotis A. Traganitis, Yanning Shen, G. Giannakis","doi":"10.1109/SPAWC.2018.8445870","DOIUrl":null,"url":null,"abstract":"Networks arise in fields such as sociology, biology, and machine learning among others, to describe complex and often interdependent systems. These increasingly complex systems call for flexible network models that allow for multiple types of interactions among the agents (nodes) known as multilayer networks. A frequently encountered task entails inference of nodal processes across the network given values on a subset of nodes. The present contribution relies on graph kernels, to put forth a novel inference approach that accounts for linear and nonlinear dependencies among nodes and leverages the layered network structure. Numerical tests with synthetic as well as real data corroborate the effectiveness of the proposed kernel-based multilayer learning scheme.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Networks arise in fields such as sociology, biology, and machine learning among others, to describe complex and often interdependent systems. These increasingly complex systems call for flexible network models that allow for multiple types of interactions among the agents (nodes) known as multilayer networks. A frequently encountered task entails inference of nodal processes across the network given values on a subset of nodes. The present contribution relies on graph kernels, to put forth a novel inference approach that accounts for linear and nonlinear dependencies among nodes and leverages the layered network structure. Numerical tests with synthetic as well as real data corroborate the effectiveness of the proposed kernel-based multilayer learning scheme.