MTPGait: Multi-person Gait Recognition with Spatio-temporal Information via Millimeter Wave Radar

Tao Li, Xu Cao, Haisong Liu, Chenqi Shi, Pengpeng Chen
{"title":"MTPGait: Multi-person Gait Recognition with Spatio-temporal Information via Millimeter Wave Radar","authors":"Tao Li, Xu Cao, Haisong Liu, Chenqi Shi, Pengpeng Chen","doi":"10.1109/ICPADS53394.2021.00088","DOIUrl":null,"url":null,"abstract":"As one of the important methods of identity recognition, gait recognition has a wide range of applications in the fields of new human-computer interaction, smart home, smart office and health monitoring. In this paper, we propose a system for multi-person gait recognition (MTPGait) with spatio-temporal information via millimeter wave radar. We specially design a neural network that can extract multi-scale spatio-temporal features along space and time dimensions of 3D point cloud concisely and efficiently. In addition, we construct and release a millimeter wave radar 3D point cloud data set, which consists of 960-minute gait data of 25 volunteers. The experimental results show that MTPGait is able to achieve 96.7% recognition accuracy in a single-person scene on random routes, and 90.2 % recognition accuracy when two people coexist, while the accuracy of the existing methods can not reach 90 % in either scenario.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As one of the important methods of identity recognition, gait recognition has a wide range of applications in the fields of new human-computer interaction, smart home, smart office and health monitoring. In this paper, we propose a system for multi-person gait recognition (MTPGait) with spatio-temporal information via millimeter wave radar. We specially design a neural network that can extract multi-scale spatio-temporal features along space and time dimensions of 3D point cloud concisely and efficiently. In addition, we construct and release a millimeter wave radar 3D point cloud data set, which consists of 960-minute gait data of 25 volunteers. The experimental results show that MTPGait is able to achieve 96.7% recognition accuracy in a single-person scene on random routes, and 90.2 % recognition accuracy when two people coexist, while the accuracy of the existing methods can not reach 90 % in either scenario.
mtp步态:基于毫米波雷达时空信息的多人步态识别
步态识别作为身份识别的重要方法之一,在新型人机交互、智能家居、智能办公、健康监测等领域有着广泛的应用。本文提出了一种基于毫米波雷达的基于时空信息的多人步态识别系统。我们专门设计了一种神经网络,可以简洁高效地提取三维点云的多尺度时空特征。此外,我们构建并发布了一个毫米波雷达三维点云数据集,该数据集由25名志愿者960分钟的步态数据组成。实验结果表明,mtp步态在随机路线上的单人场景下的识别准确率为96.7%,在两人共存场景下的识别准确率为90.2%,而现有方法在这两种场景下的准确率均达不到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信