Automated Cell-Type Classification and Death-Detection of Spinal Motoneurons

Mai Gamal, M. Mousa, S. Eldawlatly, Sherif M. Elbasiouny
{"title":"Automated Cell-Type Classification and Death-Detection of Spinal Motoneurons","authors":"Mai Gamal, M. Mousa, S. Eldawlatly, Sherif M. Elbasiouny","doi":"10.1109/CIBEC.2018.8641824","DOIUrl":null,"url":null,"abstract":"Spinal motoneurons (MNs) play a crucial role in movement control. Decoding the firing activity of spinal MNs could help in real-life challenges, such as enhancing the control of myoelectric prostheses and diagnosing neurodegenerative diseases. In this paper, we propose a machine learning approach to automatically classify MNs based on their firing activity. Applying the proposed approach to data from a MN computational model, the classification accuracy of all examined datasets exceeded 95%. We extended the approach to detecting the death of a given MN type using clustering validity index. Results indicated that 86% of the examined death-detection cases were detected accurately. These results demonstrate that the proposed approach is a successful step in automating neuronal cell-type classification.","PeriodicalId":407809,"journal":{"name":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2018.8641824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal motoneurons (MNs) play a crucial role in movement control. Decoding the firing activity of spinal MNs could help in real-life challenges, such as enhancing the control of myoelectric prostheses and diagnosing neurodegenerative diseases. In this paper, we propose a machine learning approach to automatically classify MNs based on their firing activity. Applying the proposed approach to data from a MN computational model, the classification accuracy of all examined datasets exceeded 95%. We extended the approach to detecting the death of a given MN type using clustering validity index. Results indicated that 86% of the examined death-detection cases were detected accurately. These results demonstrate that the proposed approach is a successful step in automating neuronal cell-type classification.
脊髓运动神经元的自动细胞类型分类和死亡检测
脊髓运动神经元在运动控制中起着至关重要的作用。解码脊髓MNs的放电活动可能有助于解决现实生活中的挑战,例如增强对肌电假肢的控制和诊断神经退行性疾病。在本文中,我们提出了一种机器学习方法来根据它们的发射活动自动分类神经网络。将所提出的方法应用于来自MN计算模型的数据,所有检查的数据集的分类准确率都超过95%。我们使用聚类有效性指数扩展了检测给定MN类型死亡的方法。结果表明,86%的死亡检出病例被准确检出。这些结果表明,所提出的方法是自动化神经元细胞类型分类的成功一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信