A methodology for enhancing data quality for classification purposes using attribute-based decision graphs

J. R. Bertini
{"title":"A methodology for enhancing data quality for classification purposes using attribute-based decision graphs","authors":"J. R. Bertini","doi":"10.1109/LA-CCI.2017.8285692","DOIUrl":null,"url":null,"abstract":"The accuracy performance of a classification system strongly depends on the quality of the data used to train it. Among other issues, noise in the attribute values degrades data quality and interferes badly with the process of automatic classification. This paper proposes a novel method of data cleansing designed for enhancing classification accuracy. The cleansing procedure is based on the Attribute-based Decision Graphs, which are graphs built over the attribute space of a data set. Such graphs gather the underlying patterns from the data set and use this knowledge to check each attribute value for noise. Classification results considering four learning algorithms and five data sets with artificially added noise have shown the effectiveness of the proposed cleansing procedure.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"40 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The accuracy performance of a classification system strongly depends on the quality of the data used to train it. Among other issues, noise in the attribute values degrades data quality and interferes badly with the process of automatic classification. This paper proposes a novel method of data cleansing designed for enhancing classification accuracy. The cleansing procedure is based on the Attribute-based Decision Graphs, which are graphs built over the attribute space of a data set. Such graphs gather the underlying patterns from the data set and use this knowledge to check each attribute value for noise. Classification results considering four learning algorithms and five data sets with artificially added noise have shown the effectiveness of the proposed cleansing procedure.
一种使用基于属性的决策图提高数据质量以进行分类的方法
分类系统的准确性很大程度上取决于用于训练它的数据的质量。其中,属性值中的噪声会降低数据质量,严重干扰自动分类过程。为了提高分类精度,提出了一种新的数据清洗方法。清理过程基于基于属性的决策图,它是在数据集的属性空间上构建的图。这样的图从数据集中收集底层模式,并使用这些知识检查每个属性值是否有噪声。考虑四种学习算法和五种人工添加噪声的数据集的分类结果表明了所提出的清理过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信