Parallel symmetry-breaking in sparse graphs

A. Goldberg, Serge A. Plotkin, Gregory E. Shannon
{"title":"Parallel symmetry-breaking in sparse graphs","authors":"A. Goldberg, Serge A. Plotkin, Gregory E. Shannon","doi":"10.1145/28395.28429","DOIUrl":null,"url":null,"abstract":"We describe efficient deterministic techniques for breaking symmetry in parallel. The techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3-color a rooted tree in &Ogr;(lg*n) time on an EREW PRAM using a linear number of processors. We apply these techniques to construct fast linear processor algorithms for several problems, including (&Dgr; + 1)-coloring constant-degree graphs, 5-coloring planar graphs, and finding depth-first-search trees in planar graphs. We also prove lower bounds for 2-coloring directed lists and for finding maximal independent sets in arbitrary graphs.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"359","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 359

Abstract

We describe efficient deterministic techniques for breaking symmetry in parallel. The techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3-color a rooted tree in &Ogr;(lg*n) time on an EREW PRAM using a linear number of processors. We apply these techniques to construct fast linear processor algorithms for several problems, including (&Dgr; + 1)-coloring constant-degree graphs, 5-coloring planar graphs, and finding depth-first-search trees in planar graphs. We also prove lower bounds for 2-coloring directed lists and for finding maximal independent sets in arbitrary graphs.
稀疏图中的平行对称破缺
我们描述了并行破缺对称性的高效确定性技术。这些技术在有根树和常次或属的图上工作得很好。我们的主要技术允许我们在使用线性数量的处理器的EREW PRAM上在&Ogr;(lg*n)时间内对根树进行三色。我们将这些技术应用于几个问题的快速线性处理器算法,包括(&Dgr;+ 1) 1次着色的常次图,5次着色的平面图,在平面图中寻找深度优先搜索树。我们还证明了2-着色有向表的下界和在任意图中寻找最大独立集的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信