Intelligent Diagnosis of Vascular Anomalies with Deep Learning

Yuwei Cai, Xia Gong, Qiang He, X. Fan, P. Xiong
{"title":"Intelligent Diagnosis of Vascular Anomalies with Deep Learning","authors":"Yuwei Cai, Xia Gong, Qiang He, X. Fan, P. Xiong","doi":"10.1145/3570773.3570818","DOIUrl":null,"url":null,"abstract":"Correct classification and diagnosis of vascular anomalies is an important prerequisite for further clinical treatment. In general, clinical diagnosis of vascular anomalies is conducted according to different characteristics of ultrasonography. However, the clinical presentation of infantile hemangioma (IH) and venous mal- formation (VM) is similar and not easy to be separated. The difficulties result from the special diagnostic ultrasonography mode, indistinguishable grayscale images, rich texture, extensive involvement area, blurred boundary, and the unique blood flow ultrasonography acquisition method of VM. Here we propose a deep learning algorithm for detection and recognition of IH and VM lesions from ultrasonography. The experimental results have shown a good recognition performance on IH and VM ultrasonic images.","PeriodicalId":153475,"journal":{"name":"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences","volume":"372 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3570773.3570818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Correct classification and diagnosis of vascular anomalies is an important prerequisite for further clinical treatment. In general, clinical diagnosis of vascular anomalies is conducted according to different characteristics of ultrasonography. However, the clinical presentation of infantile hemangioma (IH) and venous mal- formation (VM) is similar and not easy to be separated. The difficulties result from the special diagnostic ultrasonography mode, indistinguishable grayscale images, rich texture, extensive involvement area, blurred boundary, and the unique blood flow ultrasonography acquisition method of VM. Here we propose a deep learning algorithm for detection and recognition of IH and VM lesions from ultrasonography. The experimental results have shown a good recognition performance on IH and VM ultrasonic images.
基于深度学习的血管异常智能诊断
血管异常的正确分类和诊断是进一步临床治疗的重要前提。一般情况下,临床对血管异常的诊断是根据超声的不同特征进行的。然而,婴儿血管瘤(IH)和静脉畸形(VM)的临床表现相似,不易区分。特殊的超声诊断模式、灰度图像难以区分、纹理丰富、受累范围广、边界模糊、VM独特的血流超声采集方法等都是造成诊断困难的原因。在这里,我们提出了一种深度学习算法来检测和识别超声图像中的IH和VM病变。实验结果表明,该方法对IH和VM超声图像具有良好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信