{"title":"Boosting output distributions in finite blocklength channel coding converse bounds","authors":"O. Kosut","doi":"10.1109/ITW.2015.7133158","DOIUrl":null,"url":null,"abstract":"Point-to-point channel coding is studied in the finite blocklength regime. Many existing converse bounds involve an optimization over a distribution on the channel output. This paper provides a method for generating good, if not optimal, output distributions. In particular, given any candidate output distribution, a “boosting” procedure is given that constructs a new distribution which improves the converse bound derived from the divergence spectrum. For discrete memoryless channels, it is shown that using the i.i.d. capacity-achieving output distribution as an initial guess in this procedure results in an output distribution that is good enough to derive the third-order coding rate for most channels. The finite blocklengths bounds are then applied to the Z channel.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Point-to-point channel coding is studied in the finite blocklength regime. Many existing converse bounds involve an optimization over a distribution on the channel output. This paper provides a method for generating good, if not optimal, output distributions. In particular, given any candidate output distribution, a “boosting” procedure is given that constructs a new distribution which improves the converse bound derived from the divergence spectrum. For discrete memoryless channels, it is shown that using the i.i.d. capacity-achieving output distribution as an initial guess in this procedure results in an output distribution that is good enough to derive the third-order coding rate for most channels. The finite blocklengths bounds are then applied to the Z channel.