System for Automatic Representation of Correlation Rhythmogram Dynamics of Long-Term ECG Signal Recordings

P. Y. Timofeeva, B. E. Alekseev, L. A. Manilo, A. Nemirko
{"title":"System for Automatic Representation of Correlation Rhythmogram Dynamics of Long-Term ECG Signal Recordings","authors":"P. Y. Timofeeva, B. E. Alekseev, L. A. Manilo, A. Nemirko","doi":"10.1109/EIConRus49466.2020.9039513","DOIUrl":null,"url":null,"abstract":"In clinical practice, 24-hour monitoring of ECG records is often used to study heart rhythm. One of the methods for analyzing long-term ECG signal recordings is to present the signal in the form of a correlation rhythmogram. Using the analysis of scatterograms, static information is obtained, the processing of which gives primitive features and not enough information. These features are unable to describe the dynamic change in RR-intervals, which contains useful information about the nature of the heartbeat. We developed a system that allows to represent signals of long-term ECG recordings as a dynamic correlation rhythmogram. The algorithm allows to view the change in the dynamics of the heartbeat for 24 hours in a time less than 1 minute. Using our development as a tool for visualizing dynamic information of RR-intervals, specialists can extract unique information about the nature of the heartbeat and classify heart disorders with high accuracy.","PeriodicalId":333365,"journal":{"name":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConRus49466.2020.9039513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical practice, 24-hour monitoring of ECG records is often used to study heart rhythm. One of the methods for analyzing long-term ECG signal recordings is to present the signal in the form of a correlation rhythmogram. Using the analysis of scatterograms, static information is obtained, the processing of which gives primitive features and not enough information. These features are unable to describe the dynamic change in RR-intervals, which contains useful information about the nature of the heartbeat. We developed a system that allows to represent signals of long-term ECG recordings as a dynamic correlation rhythmogram. The algorithm allows to view the change in the dynamics of the heartbeat for 24 hours in a time less than 1 minute. Using our development as a tool for visualizing dynamic information of RR-intervals, specialists can extract unique information about the nature of the heartbeat and classify heart disorders with high accuracy.
长期心电信号记录相关心律动态自动表示系统
在临床实践中,常采用24小时心电监护来研究心律。分析长期心电信号记录的方法之一是以相关心律图的形式呈现信号。通过对散点图的分析,得到静态信息,对其进行处理,得到的是原始特征,信息不足。这些特征无法描述rr间隔的动态变化,而rr间隔包含有关心跳性质的有用信息。我们开发了一个系统,可以将长期心电图记录的信号表示为动态相关心律图。该算法允许在不到1分钟的时间内查看24小时内心跳动态的变化。使用我们的开发作为可视化rr间隔动态信息的工具,专家可以提取有关心跳性质的独特信息,并以高精度分类心脏疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信