Surge Tank Stability under Distributed Parameters

D. Danciu, D. Popescu, V. Răsvan
{"title":"Surge Tank Stability under Distributed Parameters","authors":"D. Danciu, D. Popescu, V. Răsvan","doi":"10.1109/ICSTCC55426.2022.9931795","DOIUrl":null,"url":null,"abstract":"The paper considers the stability analysis of the surge tank in hydroelectric power plants, in the case of elastic upstream water column i.e. with distributed parameters tunnel. The model is obtained as a special case from a rather general hydroelectric plant structure with distributed parameters of the water flow along the conduits. The stability of the linearized model is discussed using the stability of an associated system of neutral functional differential equations via the classical results on Hurwitz quasi-polynomials obtained by N. G. Čebotarev and N. N. Meyman. Application of these results leads to an improved Thoma inequality containing a safety factor larger than 1.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the stability analysis of the surge tank in hydroelectric power plants, in the case of elastic upstream water column i.e. with distributed parameters tunnel. The model is obtained as a special case from a rather general hydroelectric plant structure with distributed parameters of the water flow along the conduits. The stability of the linearized model is discussed using the stability of an associated system of neutral functional differential equations via the classical results on Hurwitz quasi-polynomials obtained by N. G. Čebotarev and N. N. Meyman. Application of these results leads to an improved Thoma inequality containing a safety factor larger than 1.
分布参数下调压舱稳定性研究
本文研究了弹性上游水柱即分布参数隧洞中水调压池的稳定性分析。该模型是一个比较一般的水电厂结构的特例,具有沿管道水流的分布参数。利用N. G. Čebotarev和N. N. Meyman关于Hurwitz拟多项式的经典结果,利用中立型泛函微分方程关联系统的稳定性讨论了线性化模型的稳定性。应用这些结果可以得到一个改进的托玛不等式,其安全系数大于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信