Position estimation for a mobile robot using data fusion

E. Stella, G. Cicirelli, F.P. Lovergine, A. Distante
{"title":"Position estimation for a mobile robot using data fusion","authors":"E. Stella, G. Cicirelli, F.P. Lovergine, A. Distante","doi":"10.1109/ISIC.1995.525115","DOIUrl":null,"url":null,"abstract":"This paper describes a position estimation technique based on the fusion of data obtained by two independent subsystems in a mobile robot navigation context. The first subsystem is a self-location one composed of an onboard camera, an onboard image processing unit and artificial landmarks; the second one is a dead-reckoning subsystem based on odometry. The robot navigation system integrates the position estimation obtained by the vision subsystem with the position estimated by odometry using a Kalman filter framework.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper describes a position estimation technique based on the fusion of data obtained by two independent subsystems in a mobile robot navigation context. The first subsystem is a self-location one composed of an onboard camera, an onboard image processing unit and artificial landmarks; the second one is a dead-reckoning subsystem based on odometry. The robot navigation system integrates the position estimation obtained by the vision subsystem with the position estimated by odometry using a Kalman filter framework.
基于数据融合的移动机器人位置估计
在移动机器人导航环境下,提出了一种基于两个独立子系统数据融合的位置估计技术。第一个子系统是自定位子系统,由机载摄像机、机载图像处理单元和人工地标组成;二是基于里程计的航位推算子系统。机器人导航系统采用卡尔曼滤波框架,将视觉子系统得到的位置估计与里程计得到的位置估计相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信