Parallelized computation for Edge Histogram Descriptor using CUDA on the Graphics Processing Units (GPU)

A. Mohammadabadi, A. Chalechale, H. Heidari
{"title":"Parallelized computation for Edge Histogram Descriptor using CUDA on the Graphics Processing Units (GPU)","authors":"A. Mohammadabadi, A. Chalechale, H. Heidari","doi":"10.1109/CADS.2013.6714231","DOIUrl":null,"url":null,"abstract":"Most image processing algorithms are inherently parallel, so multithreading processors are suitable in such applications. In huge image databases, image processing takes very long time for run on a single core processor because of single thread execution of algorithms. GPU is more common in most image processing applications due to multithread execution of algorithms, programmability and low cost. In this paper we show how to implement the MPRG-7 Edge Histogram Descriptor in parallel using CUDA programming model on a GPU. The Edge Histogram Descriptor describes the distribution of various types of edges with a histogram that can be a tool for image matching. This feature is applied to search images from a database which are similar to a query image. We evaluated the retrieval of the proposed technique using recall, precision, and average precision measures. Experimental results showed that parallel implementation led to an average speed up of 14.74×over the serial implementation. The average precision and the average recall of presented method are 67.02% and 55.00% respectively.","PeriodicalId":379673,"journal":{"name":"The 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CADS.2013.6714231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Most image processing algorithms are inherently parallel, so multithreading processors are suitable in such applications. In huge image databases, image processing takes very long time for run on a single core processor because of single thread execution of algorithms. GPU is more common in most image processing applications due to multithread execution of algorithms, programmability and low cost. In this paper we show how to implement the MPRG-7 Edge Histogram Descriptor in parallel using CUDA programming model on a GPU. The Edge Histogram Descriptor describes the distribution of various types of edges with a histogram that can be a tool for image matching. This feature is applied to search images from a database which are similar to a query image. We evaluated the retrieval of the proposed technique using recall, precision, and average precision measures. Experimental results showed that parallel implementation led to an average speed up of 14.74×over the serial implementation. The average precision and the average recall of presented method are 67.02% and 55.00% respectively.
基于CUDA在GPU上并行计算边缘直方图描述符
大多数图像处理算法本质上是并行的,因此多线程处理器适合于这种应用。在大型图像数据库中,由于算法的单线程执行,图像处理在单核处理器上运行的时间很长。由于算法的多线程执行、可编程性和低成本,GPU在大多数图像处理应用中更为常见。在本文中,我们展示了如何在GPU上使用CUDA编程模型并行实现MPRG-7边缘直方图描述符。边缘直方图描述符用直方图描述各种类型的边缘的分布,可以作为图像匹配的工具。此特性应用于从数据库中搜索与查询图像相似的图像。我们使用召回率、精度和平均精度来评估所提出技术的检索效果。实验结果表明,并行实现比串行实现的平均速度提高14.74×over。该方法的平均查准率和查全率分别为67.02%和55.00%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信