Shape and Intensity Analysis of Glioblastoma Multiforme Tumors

Yi Tang Chen, S. Kurtek
{"title":"Shape and Intensity Analysis of Glioblastoma Multiforme Tumors","authors":"Yi Tang Chen, S. Kurtek","doi":"10.1109/CVPRW59228.2023.00062","DOIUrl":null,"url":null,"abstract":"We use a geometric approach to characterize tumor shape and intensity along the tumor contour in the context of Glioblastoma Multiforme. Properties of the proposed shape+intensity representation include invariance to translation, scale, rotation and reparameterization, which allow for objective comparison of tumor features. Controlling for the weight of intensity information in the shape+intensity representation results in improved comparisons between tumor features of different patients who have been diagnosed with Glioblastoma Multiforme; further, it allows for identification of different partitions of the data associated with different median survival among such patients. Our findings suggest that integrating and appropriately balancing information regarding GBM tumor shape and intensity can be beneficial for disease prognosis. We evaluate the proposed statistical framework using simulated examples as well as a real dataset of Glioblastoma Multiforme tumors.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a geometric approach to characterize tumor shape and intensity along the tumor contour in the context of Glioblastoma Multiforme. Properties of the proposed shape+intensity representation include invariance to translation, scale, rotation and reparameterization, which allow for objective comparison of tumor features. Controlling for the weight of intensity information in the shape+intensity representation results in improved comparisons between tumor features of different patients who have been diagnosed with Glioblastoma Multiforme; further, it allows for identification of different partitions of the data associated with different median survival among such patients. Our findings suggest that integrating and appropriately balancing information regarding GBM tumor shape and intensity can be beneficial for disease prognosis. We evaluate the proposed statistical framework using simulated examples as well as a real dataset of Glioblastoma Multiforme tumors.
多形性胶质母细胞瘤的形态和强度分析
在多形性胶质母细胞瘤的背景下,我们使用几何方法沿肿瘤轮廓表征肿瘤形状和强度。所提出的形状+强度表示的特性包括平移、缩放、旋转和重新参数化的不变性,这允许对肿瘤特征进行客观比较。控制形状+强度表示中强度信息的权重,可以改善诊断为多形性胶质母细胞瘤的不同患者的肿瘤特征之间的比较;此外,它允许识别这些患者中与不同中位生存期相关的数据的不同分区。我们的研究结果表明,整合和适当平衡有关GBM肿瘤形状和强度的信息有助于疾病预后。我们使用模拟的例子以及多形性胶质母细胞瘤的真实数据集来评估提出的统计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信