Towards Classifying Motor Imagery Using a Consumer-Grade Brain-Computer Interface

Ganyu Wang, Miguel Vargas Martin, P. Hung, Shane MacDonald
{"title":"Towards Classifying Motor Imagery Using a Consumer-Grade Brain-Computer Interface","authors":"Ganyu Wang, Miguel Vargas Martin, P. Hung, Shane MacDonald","doi":"10.1109/ICCC.2019.00023","DOIUrl":null,"url":null,"abstract":"This research attempts to classify electroencephalogram (EEG) signals of motor imagery of left and right hand movement with a consumer-grade brain-computer interface device, which consists of four channels. For this purpose, we designed an interface to collect a total of approximately 600 samples for left and right hand motor imagery from two subjects. Hilbert-Huang Transform was used for feature extraction, and we applied support-vector machine (SVM) and k-nearest neighbors (k-NN) algorithms for learning the features and classification. Results show that these methods have some ability to classify left and right hand motor imagery EEG signals. This paper outlines the used methodology which could be a reference for future studies of the same nature.","PeriodicalId":262923,"journal":{"name":"2019 IEEE International Conference on Cognitive Computing (ICCC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Cognitive Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research attempts to classify electroencephalogram (EEG) signals of motor imagery of left and right hand movement with a consumer-grade brain-computer interface device, which consists of four channels. For this purpose, we designed an interface to collect a total of approximately 600 samples for left and right hand motor imagery from two subjects. Hilbert-Huang Transform was used for feature extraction, and we applied support-vector machine (SVM) and k-nearest neighbors (k-NN) algorithms for learning the features and classification. Results show that these methods have some ability to classify left and right hand motor imagery EEG signals. This paper outlines the used methodology which could be a reference for future studies of the same nature.
使用消费级脑机接口对运动图像进行分类
本研究尝试用消费级脑机接口设备对左、右手运动图像的脑电图信号进行分类,该设备由四个通道组成。为此,我们设计了一个界面,从两个受试者中收集了大约600个左右的左手和右手运动图像样本。使用Hilbert-Huang变换进行特征提取,并应用支持向量机(SVM)和k-近邻(k-NN)算法进行特征学习和分类。结果表明,该方法对左、右手运动意象脑电信号具有一定的分类能力。本文概述了所使用的方法,可为今后同类研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信