Indoor localization by particle map matching

Karim El Mokhtari, S. Reboul, J. Choquel, B. Amami, M. Benjelloun
{"title":"Indoor localization by particle map matching","authors":"Karim El Mokhtari, S. Reboul, J. Choquel, B. Amami, M. Benjelloun","doi":"10.1109/CIST.2016.7804999","DOIUrl":null,"url":null,"abstract":"This article presents the implementation of an indoor localization approach that combines map matching and a circular particle filter defined in a Bayesian framework. The technique relies only on velocity and heading observations coupled with a map of the road network. No prior knowledge of the initial position is given. A circular distribution is used to match the vehicle's heading with the roads direction. This allows to detect turns and provide a more accurate position estimate. The algorithm is assessed with a synthetic dataset in a real context.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7804999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article presents the implementation of an indoor localization approach that combines map matching and a circular particle filter defined in a Bayesian framework. The technique relies only on velocity and heading observations coupled with a map of the road network. No prior knowledge of the initial position is given. A circular distribution is used to match the vehicle's heading with the roads direction. This allows to detect turns and provide a more accurate position estimate. The algorithm is assessed with a synthetic dataset in a real context.
基于粒子图匹配的室内定位
本文介绍了一种室内定位方法的实现,该方法结合了地图匹配和贝叶斯框架中定义的圆形粒子滤波器。该技术仅依赖于速度和航向观测以及路网地图。没有给出初始位置的先验知识。一个圆形分布被用来匹配车辆的方向与道路的方向。这允许检测转弯并提供更准确的位置估计。用一个真实环境下的合成数据集对该算法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信