{"title":"Derivation of Equations for a Size Distribution of Spherical Particles in Non-Transparent Materials","authors":"D. Gurgul, A. Burbelko, T. Wiktor","doi":"10.7494/jcme.2021.5.4.53","DOIUrl":null,"url":null,"abstract":"This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.","PeriodicalId":238217,"journal":{"name":"Journal of Casting & Materials Engineering","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Casting & Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/jcme.2021.5.4.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.