Towards a secure, tamper-proof grid platform

Andrew Cooper, Andrew P. Martin
{"title":"Towards a secure, tamper-proof grid platform","authors":"Andrew Cooper, Andrew P. Martin","doi":"10.1109/CCGRID.2006.103","DOIUrl":null,"url":null,"abstract":"Security concerns currently deter or prohibit many organisations from leveraging the benefits of the grid. When sensitive data is placed under the control of third-party infrastructure it is difficult to obtain assurances that it will be appropriately protected. We develop a grid platform architecture based on a secure root of trust. This component provides a tamper-resistant environment for grid job execution that resists attack even if the host itself is compromised. We use trusted computing, a security technology currently being integrated into an increasing number of mainstream PCs, for dynamic trust establishment within the grid. These elements are combined to create a novel and practical solution for the grid malicious host problem, ensuring that data integrity and confidentiality are appropriately protected for jobs that span multiple administrative domains.","PeriodicalId":419226,"journal":{"name":"Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2006.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Security concerns currently deter or prohibit many organisations from leveraging the benefits of the grid. When sensitive data is placed under the control of third-party infrastructure it is difficult to obtain assurances that it will be appropriately protected. We develop a grid platform architecture based on a secure root of trust. This component provides a tamper-resistant environment for grid job execution that resists attack even if the host itself is compromised. We use trusted computing, a security technology currently being integrated into an increasing number of mainstream PCs, for dynamic trust establishment within the grid. These elements are combined to create a novel and practical solution for the grid malicious host problem, ensuring that data integrity and confidentiality are appropriately protected for jobs that span multiple administrative domains.
走向一个安全的,防篡改的电网平台
目前,安全问题阻碍或禁止许多组织利用电网的好处。当敏感数据置于第三方基础设施的控制之下时,很难保证它将得到适当的保护。我们开发了一个基于安全信任根的网格平台架构。该组件为网格作业执行提供了一个防篡改的环境,即使主机本身受到损害,也能抵抗攻击。我们使用可信计算(一种目前被越来越多的主流pc集成的安全技术)在网格内动态建立信任。这些元素组合在一起,为网格恶意主机问题创建了一种新颖实用的解决方案,确保跨多个管理域的作业的数据完整性和机密性得到适当保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信