Skeleton planning spaces for non-numeric heuristic optimization*

ACM '74 Pub Date : 1973-11-01 DOI:10.1145/800182.810401
L. Siklóssy, M. Haecker
{"title":"Skeleton planning spaces for non-numeric heuristic optimization*","authors":"L. Siklóssy, M. Haecker","doi":"10.1145/800182.810401","DOIUrl":null,"url":null,"abstract":"The AFTERMATH system implements a heuristic technique for improving long solutions (up to about 250 steps) for robot planning problems. AFTERMATH transforms the given solution into a skeleton solution that focuses attention on repetitious and opposite moves. AFTERMATH attempts to obtain an alternate, improved skeleton. From the alternate skeleton, an alternate solution is built (if possible) to the original problem. If the alternate solution is an improvement, AFTERMATH accepts it as input, and cycles. Although not guaranteeing optimality, AFTERMATH improves many solutions, sometimes gradually in several cycles. Examples can be built for which AFTERMATH obtains an arbitrarily large improvement in one cycle.","PeriodicalId":204185,"journal":{"name":"ACM '74","volume":"345 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '74","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800182.810401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The AFTERMATH system implements a heuristic technique for improving long solutions (up to about 250 steps) for robot planning problems. AFTERMATH transforms the given solution into a skeleton solution that focuses attention on repetitious and opposite moves. AFTERMATH attempts to obtain an alternate, improved skeleton. From the alternate skeleton, an alternate solution is built (if possible) to the original problem. If the alternate solution is an improvement, AFTERMATH accepts it as input, and cycles. Although not guaranteeing optimality, AFTERMATH improves many solutions, sometimes gradually in several cycles. Examples can be built for which AFTERMATH obtains an arbitrarily large improvement in one cycle.
非数值启发式优化的骨架规划空间*
余波系统实现了一种启发式技术,用于改进机器人规划问题的长解决方案(最多约250步)。余波将给定的解决方案转变为一个框架解决方案,将注意力集中在重复和相反的动作上。余波试图获得一个替代的,改进的骨骼。从备用骨架中构建(如果可能的话)原始问题的备用解决方案。如果备选解决方案是一种改进,那么余波将接受它作为输入,并进行循环。虽然不能保证最优性,但余波改进了许多解决方案,有时在几个周期中逐渐改进。例如,余波可以在一个周期内获得任意大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信