{"title":"A Gaussian Artificial Immune System for Multi-Objective optimization in continuous domains","authors":"P. Castro, F. V. Zuben","doi":"10.1109/HIS.2010.5600022","DOIUrl":null,"url":null,"abstract":"This paper proposes a Multi-Objective Gaussian Artificial Immune System (MOGAIS) to deal effectively with building blocks (high-quality partial solutions coded in the solution vector) in multi-objective continuous optimization problems. By replacing the mutation and cloning operators with a probabilistic model, more specifically a Gaussian network representing the joint distribution of promising solutions, MOGAIS takes into account the relationships among the variables of the problem, avoiding the disruption of already obtained high-quality partial solutions. The algorithm was applied to three benchmarks and the results were compared with those produced by state-of-the-art algorithms.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5600022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper proposes a Multi-Objective Gaussian Artificial Immune System (MOGAIS) to deal effectively with building blocks (high-quality partial solutions coded in the solution vector) in multi-objective continuous optimization problems. By replacing the mutation and cloning operators with a probabilistic model, more specifically a Gaussian network representing the joint distribution of promising solutions, MOGAIS takes into account the relationships among the variables of the problem, avoiding the disruption of already obtained high-quality partial solutions. The algorithm was applied to three benchmarks and the results were compared with those produced by state-of-the-art algorithms.