A neural network approach to the placement problem

M. S. Zamani, G. Hellestrand
{"title":"A neural network approach to the placement problem","authors":"M. S. Zamani, G. Hellestrand","doi":"10.1109/ASPDAC.1995.486253","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new neural network approach to the placement of gate array designs. The network used is a Kohonen self-organising map. An abstract specification of the design is converted to a set of appropriate input vectors fed to the network at random. At the end of the process, the map shows a 2-dimensional plane of the design in which the modules with higher connectivity are placed adjacent to each other, hence minimising total connection length in the design. The approach can consider external connections and is able to place modules in a rectilinear boundary. These features makes the approach capable of being used in hierarchical floorplanning algorithms.","PeriodicalId":119232,"journal":{"name":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1995.486253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we introduce a new neural network approach to the placement of gate array designs. The network used is a Kohonen self-organising map. An abstract specification of the design is converted to a set of appropriate input vectors fed to the network at random. At the end of the process, the map shows a 2-dimensional plane of the design in which the modules with higher connectivity are placed adjacent to each other, hence minimising total connection length in the design. The approach can consider external connections and is able to place modules in a rectilinear boundary. These features makes the approach capable of being used in hierarchical floorplanning algorithms.
定位问题的一种神经网络方法
在本文中,我们引入了一种新的神经网络方法来放置门阵列设计。使用的网络是Kohonen自组织图。设计的抽象规范被转换成一组适当的输入向量,随机馈送到网络中。在流程结束时,地图显示了设计的二维平面,其中连接性较高的模块彼此相邻放置,从而最小化设计中的总连接长度。该方法可以考虑外部连接,并能够将模块放置在直线边界中。这些特点使该方法能够用于分层平面规划算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信