S. Shvyrkov, I. Apanasenko, A. Tretyakov, S. Makarov, A. Feschenko, S. Voevoda
{"title":"EXPERIMENTAL INSTALLATION FOR DETERMINING CRITICAL INTENSITY OF FOAM DISCHARGE TO A TANK WITH HIGH-OCTANE GASOLINE","authors":"S. Shvyrkov, I. Apanasenko, A. Tretyakov, S. Makarov, A. Feschenko, S. Voevoda","doi":"10.25257/fe.2021.3.30-36","DOIUrl":null,"url":null,"abstract":"Purpose. The analysis of normative documents regulating the amount of foam supply intensity for extinguishing high-octane gasoline was carried out in the research. The developed technique of determining foam supply critical intensity by various methods depending on the initial heating of high-octane gasoline is described, as well as the experimental installation that allows implementing a combined foam discharge method whereby foam is simultaneously discharged both onto the surface of the combustible liquid and under the layer. Methods. The authors analyzed normative documents regulating fire extinguishment of oil and petrochemicals. The study was carried out at the experimental installation developed according to the appropriate test method. Findings. The analysis of normative documents indicated differences in the criteria for choosing foam discharge intensity for high-octane gasoline. It was decided to determine the possibility of applying increasing factors for standard values of foam discharge intensity depending on time of free fire development in a high-octane gasoline tank. The experimental installation was based on the standardized installation according to GOST R 50588, which was modernized for possible foam discharge in a combined way. Fuel is preheated to determine the heating temperature effect on foam application rate. Model foam generators with a flow rate of 1.8-2.2 g/s and pans of various diameters were used to change the intensity of foam discharge. Research application field. This technique will be used for obtaining data on determining the most effective method of extinguishing high-octane gasoline at different time intervals. The experimental installation will allow obtaining new data on choosing intensity and methods of foam discharge for modern mixed gasolines. Conclusions. The carried-out work showed the relevance of conducted research work aimed at assessing the value of foam discharge critical intensity applying various methods depending on the initial heating temperature of high-octane gasoline in the tank. To determine the target value, the experimental stand and the corresponding test procedure have been developed, the results of which will be given in further publications.","PeriodicalId":105490,"journal":{"name":"Fire and Emergencies: prevention, elimination","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Emergencies: prevention, elimination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25257/fe.2021.3.30-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose. The analysis of normative documents regulating the amount of foam supply intensity for extinguishing high-octane gasoline was carried out in the research. The developed technique of determining foam supply critical intensity by various methods depending on the initial heating of high-octane gasoline is described, as well as the experimental installation that allows implementing a combined foam discharge method whereby foam is simultaneously discharged both onto the surface of the combustible liquid and under the layer. Methods. The authors analyzed normative documents regulating fire extinguishment of oil and petrochemicals. The study was carried out at the experimental installation developed according to the appropriate test method. Findings. The analysis of normative documents indicated differences in the criteria for choosing foam discharge intensity for high-octane gasoline. It was decided to determine the possibility of applying increasing factors for standard values of foam discharge intensity depending on time of free fire development in a high-octane gasoline tank. The experimental installation was based on the standardized installation according to GOST R 50588, which was modernized for possible foam discharge in a combined way. Fuel is preheated to determine the heating temperature effect on foam application rate. Model foam generators with a flow rate of 1.8-2.2 g/s and pans of various diameters were used to change the intensity of foam discharge. Research application field. This technique will be used for obtaining data on determining the most effective method of extinguishing high-octane gasoline at different time intervals. The experimental installation will allow obtaining new data on choosing intensity and methods of foam discharge for modern mixed gasolines. Conclusions. The carried-out work showed the relevance of conducted research work aimed at assessing the value of foam discharge critical intensity applying various methods depending on the initial heating temperature of high-octane gasoline in the tank. To determine the target value, the experimental stand and the corresponding test procedure have been developed, the results of which will be given in further publications.