Yusuf T. Elbadry, A. Hamada, M. Boraey, M. Abdelrahman
{"title":"Lid-Driven Cavity Flow with Elliptic Obstacle at Different Orientations","authors":"Yusuf T. Elbadry, A. Hamada, M. Boraey, M. Abdelrahman","doi":"10.1109/NILES53778.2021.9600497","DOIUrl":null,"url":null,"abstract":"The aim of the present work is to predict the flow field around an elliptic obstacle at different orientations inside a square Lid-Driven Cavity (LDC). The Lattice Boltzmann Method (LBM) is used to simulate the flow at a Reynolds number, Re, of 100, using the two-dimensional nine-velocity, (D2Q9) lattice configuration and the BGK collision operator. The in-house code is validated using data from the literature for the case of LDC with a central circular cylinder. Different ellipse orientations are tested (0°, 30°, 45°, 90°, 120°, 145°, and 150°) to check the effect of orientation on the vortex formation. Further, the cases are compared with the case of a circular obstacle. The results show that the orientation affects the induced vortex size and location. The vortex size is maximum at an orientation angle of 0° and starts to decrease until it reaches its minimum size at an orientation angle of 90°. Then, it increases again with the increase of the orientation angle until 180°.","PeriodicalId":249153,"journal":{"name":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES53778.2021.9600497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the present work is to predict the flow field around an elliptic obstacle at different orientations inside a square Lid-Driven Cavity (LDC). The Lattice Boltzmann Method (LBM) is used to simulate the flow at a Reynolds number, Re, of 100, using the two-dimensional nine-velocity, (D2Q9) lattice configuration and the BGK collision operator. The in-house code is validated using data from the literature for the case of LDC with a central circular cylinder. Different ellipse orientations are tested (0°, 30°, 45°, 90°, 120°, 145°, and 150°) to check the effect of orientation on the vortex formation. Further, the cases are compared with the case of a circular obstacle. The results show that the orientation affects the induced vortex size and location. The vortex size is maximum at an orientation angle of 0° and starts to decrease until it reaches its minimum size at an orientation angle of 90°. Then, it increases again with the increase of the orientation angle until 180°.