Ensemble Cross-Conformal Prediction

Dorian Beganovic, E. Smirnov
{"title":"Ensemble Cross-Conformal Prediction","authors":"Dorian Beganovic, E. Smirnov","doi":"10.1109/ICDMW.2018.00128","DOIUrl":null,"url":null,"abstract":"The cross-conformal prediction is an approach to confidence region prediction. It provides a trade-off between the validity and informational efficiency of the prediction regions from one hand and the computational complexity from another. In this paper we introduce a new cross-conformal approach based on ensembles. The new approach is more computationally efficient and provides gains in the validity and informational efficiency of the prediction regions. Hence, it is a good candidate for big data (analytics) when prediction regions with confidence values are required.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The cross-conformal prediction is an approach to confidence region prediction. It provides a trade-off between the validity and informational efficiency of the prediction regions from one hand and the computational complexity from another. In this paper we introduce a new cross-conformal approach based on ensembles. The new approach is more computationally efficient and provides gains in the validity and informational efficiency of the prediction regions. Hence, it is a good candidate for big data (analytics) when prediction regions with confidence values are required.
集合交叉保角预测
交叉保形预测是置信区域预测的一种方法。它一方面提供了预测区域的有效性和信息效率,另一方面提供了计算复杂性之间的权衡。本文介绍了一种新的基于集成的交叉共形方法。新方法的计算效率更高,并在预测区域的有效性和信息效率方面有所提高。因此,当需要具有置信度值的预测区域时,它是大数据(分析)的良好候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信