Spatiotemporal Statistical Shape Model Construction for the Observation of Temporal Change in Human Brain Shape

S. Alam, Syoji Kobashi
{"title":"Spatiotemporal Statistical Shape Model Construction for the Observation of Temporal Change in Human Brain Shape","authors":"S. Alam, Syoji Kobashi","doi":"10.5772/INTECHOPEN.80592","DOIUrl":null,"url":null,"abstract":"This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.","PeriodicalId":363789,"journal":{"name":"Non-Invasive Diagnostic Methods - Image Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Invasive Diagnostic Methods - Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.
构建时空统计形状模型观察人脑形状的时空变化
本章介绍了一种利用脑磁共振图像的时空统计形状模型(stSSM),该模型不仅表示形状的统计变异性,而且表示统计方差随时间的时间变化。该方法采用基于期望最大化(EM)的加权主成分分析(WPCA),使用时间加权函数,其中e步使用时间特征向量估计每个数据的特征值,m步更新特征向量以最大化方差。该方法构建了特征向量随时间变化的stSSM模型。根据受试者的年龄为每个受试者分配预定义的权重参数,计算出时间特异性stSSM的加权方差。为了验证该方法,本研究从OASIS数据库中选取了105名成人受试者(年龄:30-84岁,平均±SD = 60.61±16.97)。为时间点40-80构建的stSSM,步长为2。所提出的方法允许在几个主体的重复时间序列观测中表征典型的变形模式和主体特定的形状变化,其中通过优化方差观察建模性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信