{"title":"Spatiotemporal Statistical Shape Model Construction for the Observation of Temporal Change in Human Brain Shape","authors":"S. Alam, Syoji Kobashi","doi":"10.5772/INTECHOPEN.80592","DOIUrl":null,"url":null,"abstract":"This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.","PeriodicalId":363789,"journal":{"name":"Non-Invasive Diagnostic Methods - Image Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Invasive Diagnostic Methods - Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.