Pretreatment of Cotton Processing Data Based on SPSS

Xue Han, Yong Zhang, J. Qiao
{"title":"Pretreatment of Cotton Processing Data Based on SPSS","authors":"Xue Han, Yong Zhang, J. Qiao","doi":"10.1145/3341069.3342978","DOIUrl":null,"url":null,"abstract":"In the processing of cotton, a large variety of data is generated, and researchers can use this data to conduct a large number of studies to improve the quality of cotton processing. Before mining the historical data, it is necessary to pre-process the dirty data of the actual application. According to the actual data provided by the cotton factory, the data is preprocessed by the raw data. By comparing the advantages and disadvantages of various algorithms, Regression filling method is used to process data missing values. The data is standardized by Z-score method, the data is processed into the same dimension, and the seed cotton data is clustered by K-means algorithm. We choose SPSS as the data preprocessing simulation software to provide effective high-quality data for the next step of data mining.","PeriodicalId":411198,"journal":{"name":"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341069.3342978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the processing of cotton, a large variety of data is generated, and researchers can use this data to conduct a large number of studies to improve the quality of cotton processing. Before mining the historical data, it is necessary to pre-process the dirty data of the actual application. According to the actual data provided by the cotton factory, the data is preprocessed by the raw data. By comparing the advantages and disadvantages of various algorithms, Regression filling method is used to process data missing values. The data is standardized by Z-score method, the data is processed into the same dimension, and the seed cotton data is clustered by K-means algorithm. We choose SPSS as the data preprocessing simulation software to provide effective high-quality data for the next step of data mining.
基于SPSS的棉花加工数据预处理
在棉花的加工过程中,会产生各种各样的数据,研究人员可以利用这些数据进行大量的研究,以提高棉花的加工质量。在挖掘历史数据之前,需要对实际应用的脏数据进行预处理。根据棉厂提供的实际数据,对原始数据进行预处理。通过比较各种算法的优缺点,采用回归填充法对数据缺失值进行处理。采用Z-score方法对数据进行标准化,对数据进行同维处理,采用K-means算法对种棉数据进行聚类。我们选择SPSS作为数据预处理仿真软件,为下一步的数据挖掘提供有效的高质量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信