Robust feature matching for aerial visual odometry

Tarek Mouats, N. Aouf
{"title":"Robust feature matching for aerial visual odometry","authors":"Tarek Mouats, N. Aouf","doi":"10.1109/ELMAR.2014.6923324","DOIUrl":null,"url":null,"abstract":"Interest points matching for aerial visual odometry using quadrotor MAV is tackled in this work. First, a set of sparse feature points are extracted using ORB detector. These are then grouped using Gradient Vector Flow (GVF) fields by finding points of high symmetry within the image. A robust matching strategy is introduced to improve the motion estimation. In order to validate ORB features matches, their grouping points are compared. Using the matched points, windowed bundle adjustment incorporating Gauss-Newton optimization is utilised for motion estimation. In order to deal with matching outliers, a Random sample consensus outlier rejection scheme is integrated. Lack of MAV stereo datasets in the literature motivated the generation of such vital data. Detailed results validating the proposed strategy are illustrated using these datasets. Also, a comparison with other approaches is also provided and shows the superiority of our approach.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interest points matching for aerial visual odometry using quadrotor MAV is tackled in this work. First, a set of sparse feature points are extracted using ORB detector. These are then grouped using Gradient Vector Flow (GVF) fields by finding points of high symmetry within the image. A robust matching strategy is introduced to improve the motion estimation. In order to validate ORB features matches, their grouping points are compared. Using the matched points, windowed bundle adjustment incorporating Gauss-Newton optimization is utilised for motion estimation. In order to deal with matching outliers, a Random sample consensus outlier rejection scheme is integrated. Lack of MAV stereo datasets in the literature motivated the generation of such vital data. Detailed results validating the proposed strategy are illustrated using these datasets. Also, a comparison with other approaches is also provided and shows the superiority of our approach.
航空视觉里程计鲁棒特征匹配
研究了利用四旋翼飞行器进行航空视觉里程测量的兴趣点匹配问题。首先,利用ORB检测器提取一组稀疏特征点;然后通过在图像中找到高度对称的点,使用梯度矢量流(GVF)场对这些点进行分组。引入了一种鲁棒匹配策略来改进运动估计。为了验证ORB特征是否匹配,需要比较它们的分组点。利用匹配点,利用结合高斯-牛顿优化的窗口束平差进行运动估计。为了处理匹配异常点,集成了一种随机样本一致性异常点拒绝方案。文献中缺乏MAV立体数据集,促使了这些重要数据的产生。使用这些数据集说明了验证所提出策略的详细结果。并与其他方法进行了比较,说明了本文方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信